Abstract

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of decreasing muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.

Data availability

All metabolomic results generated as part of this study are provided in Supplemental tables 2 and 3 related to Figure 5.

Article and author information

Author details

  1. Arpit Sharma

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lalita Oonthonpan

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan D Sheldon

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam J Rauckhorst

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhiyong Zhu

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sean C Tompkins

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kevin Cho

    Department of Chemistry, Washington University in St Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wojciech J Grzesik

    Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lawrence R Gray

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Diego A Scerbo

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alvin D Pewa

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Emily M Cushing

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9495-802X
  13. Michael C Dyle

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. James E Cox

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Chris Adams

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Brandon S Davies

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Richard K Shields

    Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Andrew W Norris

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Gary Patti

    FOEDRC Metabolomics Core Facility, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3748-6193
  20. Leonid V Zingman

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Eric B Taylor

    Department of Biochemistry, University of Iowa, Iowa City, United States
    For correspondence
    eric-taylor@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4549-6567

Funding

National Institutes of Health (DK104998)

  • Eric B Taylor

National Institutes of Health (GM007337)

  • Sean C Tompkins

National Institutes of Health (HL007638)

  • Adam J Rauckhorst

National Institutes of Health (DK101183)

  • Lawrence R Gray

American Diabetes Association (1-18-PDF-060)

  • Adam J Rauckhorst

National Institutes of Health (DK112751)

  • Diego A Scerbo

National Institutes of Health (AR059190)

  • Eric B Taylor

National Institutes of Health (HD084645)

  • Richard K Shields

National Institutes of Health (HD082109)

  • Richard K Shields

National Institutes of Health (DK092412)

  • Leonid V Zingman

National Institutes of Health (ES028365)

  • Gary Patti

National Institutes of Health (HL130146)

  • Brandon S Davies

National Institutes of Health (HL007344)

  • Ryan D Sheldon

National Institutes of Health (DK116522)

  • Ryan D Sheldon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David E James, The University of Sydney, Australia

Ethics

Animal experimentation: Animal work was performed in accordance with the University of Iowa Animal Use and Care Committee (IACUC). The University of Iowa IACUC is accredited by AALACi (#000833), is a Registered United States Department of Agriculture research facility (USDA No. 42-R-0004), and has PHS Approved Animal Welfare Assurance (#D16-00009).

Version history

  1. Received: February 7, 2019
  2. Accepted: July 15, 2019
  3. Accepted Manuscript published: July 15, 2019 (version 1)
  4. Accepted Manuscript updated: July 18, 2019 (version 2)
  5. Version of Record published: August 6, 2019 (version 3)

Copyright

© 2019, Sharma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,622
    Page views
  • 869
    Downloads
  • 47
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arpit Sharma
  2. Lalita Oonthonpan
  3. Ryan D Sheldon
  4. Adam J Rauckhorst
  5. Zhiyong Zhu
  6. Sean C Tompkins
  7. Kevin Cho
  8. Wojciech J Grzesik
  9. Lawrence R Gray
  10. Diego A Scerbo
  11. Alvin D Pewa
  12. Emily M Cushing
  13. Michael C Dyle
  14. James E Cox
  15. Chris Adams
  16. Brandon S Davies
  17. Richard K Shields
  18. Andrew W Norris
  19. Gary Patti
  20. Leonid V Zingman
  21. Eric B Taylor
(2019)
Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness
eLife 8:e45873.
https://doi.org/10.7554/eLife.45873

Share this article

https://doi.org/10.7554/eLife.45873

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.