The distribution of fitness effects among synonymous mutations in a gene under directional selection

  1. Eleonore Lebeuf-Taylor
  2. Nick McCloskey
  3. Susan F Bailey
  4. Aaron Hinz
  5. Rees Kassen  Is a corresponding author
  1. University of Ottawa, Canada
  2. Clarkson University, United States

Abstract

The fitness effects of synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have often been assumed to be neutral, but a growing body of evidence suggests otherwise. We used site-directed mutagenesis coupled with direct measures of competitive fitness to estimate the distribution of fitness effects among synonymous mutations for a gene under directional selection and capable of adapting via synonymous nucleotide changes. Synonymous mutations had highly variable fitness effects, both deleterious and beneficial, resembling those of nonsynonymous mutations in the same gene. This variation in fitness was underlain by changes in transcription linked to the creation of internal promoter sites. A positive correlation between fitness and the presence of synonymous substitutions across a phylogeny of related Pseudomonads suggests these mutations may be common in nature. Taken together, our results provide the most compelling evidence to date that synonymous mutations with non-neutral fitness effects may in fact be commonplace.

Data availability

Genomic data has been deposited into the NCBI Sequence Read Archive as BioProject PRJNA515918. All other data generated during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, and 3.

The following data sets were generated

Article and author information

Author details

  1. Eleonore Lebeuf-Taylor

    Department of Biology, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nick McCloskey

    Department of Biology, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Susan F Bailey

    Department of Biology, Clarkson University, Potsdam, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2294-1229
  4. Aaron Hinz

    Department of Biology, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Rees Kassen

    Department of Biology, University of Ottawa, Ottawa, Canada
    For correspondence
    rees.kassen@uottawa.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5617-4259

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • Rees Kassen

Natural Sciences and Engineering Research Council of Canada (Canada Graduate Scholarship)

  • Eleonore Lebeuf-Taylor

Ontario Ministry of Economic Development and Innovation (Ontario Graduate Scholarship)

  • Nick McCloskey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Lebeuf-Taylor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,894
    views
  • 594
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eleonore Lebeuf-Taylor
  2. Nick McCloskey
  3. Susan F Bailey
  4. Aaron Hinz
  5. Rees Kassen
(2019)
The distribution of fitness effects among synonymous mutations in a gene under directional selection
eLife 8:e45952.
https://doi.org/10.7554/eLife.45952

Share this article

https://doi.org/10.7554/eLife.45952