CCN1 interlinks integrin and Hippo pathway to autoregulate tip cell activity

  1. Myo-Hyeon Park
  2. Ae Kyung Kim
  3. Sarala Manandhar
  4. Su-Young Oh
  5. Gun-Hyuk Jang
  6. Li Kang
  7. Dong-Won Lee
  8. Do Young Hyeon
  9. Sun-Hee Lee
  10. Hye Eun Lee
  11. Tae-Lin Huh
  12. Sang Heon Suh
  13. Daehee Hwang
  14. Kyunghee Byun
  15. Hae-Chul Park
  16. You Mie Lee  Is a corresponding author
  1. Kyungpook National University, Republic of Korea
  2. Korea University, Ansan Hospital, Republic of Korea
  3. POSTECH, Republic of Korea
  4. Chonnam National University Hospital, Republic of Korea
  5. Daegu Gyeongbuk Institute of Science and Technology, Republic of Korea
  6. Gachon University, Republic of Korea

Abstract

CCN1 (CYR61) stimulates active angiogenesis in various tumours, although the mechanism is largely unknown. Here, we report that CCN1 is a key regulator of endothelial tip cell activity in angiogenesis. Microvessel networks and directional vascular cell migration patterns were deformed in ccn1-knockdown zebrafish embryos. CCN1 activated VEGFR2 and downstream MAPK/PI3K signalling pathways, YAP/TAZ, as well as Rho effector mDia1 to enhance tip cell activity and CCN1 itself. VEGFR2 interacted with integrin αvβ3 through CCN1. Integrin αvβ3 inhibitor repressed tip cell number and sprouting in postnatal retinas from endothelial cell-specific Ccn1 transgenic mice, and allograft tumours in Ccn1 transgenic mice showed hyperactive vascular sprouting. Cancer patients with high CCN1 expression have poor survival outcomes and positive correlation with ITGAV and ITGB3 and high YAP/WWTR1. Thus, our data underscore the positive feedback regulation of tip cells by CCN1 through integrin αvβ3/VEGFR2 and increased YAP/TAZ activity, suggesting a promising therapeutic intervention for pathological angiogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Myo-Hyeon Park

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Ae Kyung Kim

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarala Manandhar

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Su-Young Oh

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Gun-Hyuk Jang

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Li Kang

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Dong-Won Lee

    Department of Biomedical Sciences, Korea University, Ansan Hospital, Gyeonggi-do, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Do Young Hyeon

    School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Sun-Hee Lee

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Hye Eun Lee

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Tae-Lin Huh

    School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Sang Heon Suh

    Department of Internal Medicine, Chonnam National University Hospital, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Daehee Hwang

    Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. Kyunghee Byun

    School of Medicine, Gachon University, Incheon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  15. Hae-Chul Park

    Department of Biomedical Sciences, Korea University, Ansan Hospital, Gyeonggi-do, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. You Mie Lee

    Collage of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    For correspondence
    lym@knu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5756-7169

Funding

National Research Foundation of Korea (NRF-2013R1A2A2A01068868)

  • You Mie Lee

National Research Foundation of Korea (NRF-2017R1A2B3002227)

  • You Mie Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal handling and experimental procedures were strictly conducted as per the Guidelines for Care and Use of Laboratory Animals issued by the Institutional Ethical Animal Care Committee of Kyungpook National University

Copyright

© 2019, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,070
    views
  • 631
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myo-Hyeon Park
  2. Ae Kyung Kim
  3. Sarala Manandhar
  4. Su-Young Oh
  5. Gun-Hyuk Jang
  6. Li Kang
  7. Dong-Won Lee
  8. Do Young Hyeon
  9. Sun-Hee Lee
  10. Hye Eun Lee
  11. Tae-Lin Huh
  12. Sang Heon Suh
  13. Daehee Hwang
  14. Kyunghee Byun
  15. Hae-Chul Park
  16. You Mie Lee
(2019)
CCN1 interlinks integrin and Hippo pathway to autoregulate tip cell activity
eLife 8:e46012.
https://doi.org/10.7554/eLife.46012

Share this article

https://doi.org/10.7554/eLife.46012

Further reading

    1. Cell Biology
    Satoshi Ninagawa, Masaki Matsuo ... Kazutoshi Mori
    Research Advance

    How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.