CCN1 interlinks integrin and Hippo pathway to autoregulate tip cell activity

  1. Myo-Hyeon Park
  2. Ae Kyung Kim
  3. Sarala Manandhar
  4. Su-Young Oh
  5. Gun-Hyuk Jang
  6. Li Kang
  7. Dong-Won Lee
  8. Do Young Hyeon
  9. Sun-Hee Lee
  10. Hye Eun Lee
  11. Tae-Lin Huh
  12. Sang Heon Suh
  13. Daehee Hwang
  14. Kyunghee Byun
  15. Hae-Chul Park
  16. You Mie Lee  Is a corresponding author
  1. Kyungpook National University, Republic of Korea
  2. Korea University, Ansan Hospital, Republic of Korea
  3. POSTECH, Republic of Korea
  4. Chonnam National University Hospital, Republic of Korea
  5. Daegu Gyeongbuk Institute of Science and Technology, Republic of Korea
  6. Gachon University, Republic of Korea

Abstract

CCN1 (CYR61) stimulates active angiogenesis in various tumours, although the mechanism is largely unknown. Here, we report that CCN1 is a key regulator of endothelial tip cell activity in angiogenesis. Microvessel networks and directional vascular cell migration patterns were deformed in ccn1-knockdown zebrafish embryos. CCN1 activated VEGFR2 and downstream MAPK/PI3K signalling pathways, YAP/TAZ, as well as Rho effector mDia1 to enhance tip cell activity and CCN1 itself. VEGFR2 interacted with integrin αvβ3 through CCN1. Integrin αvβ3 inhibitor repressed tip cell number and sprouting in postnatal retinas from endothelial cell-specific Ccn1 transgenic mice, and allograft tumours in Ccn1 transgenic mice showed hyperactive vascular sprouting. Cancer patients with high CCN1 expression have poor survival outcomes and positive correlation with ITGAV and ITGB3 and high YAP/WWTR1. Thus, our data underscore the positive feedback regulation of tip cells by CCN1 through integrin αvβ3/VEGFR2 and increased YAP/TAZ activity, suggesting a promising therapeutic intervention for pathological angiogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Myo-Hyeon Park

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Ae Kyung Kim

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarala Manandhar

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Su-Young Oh

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Gun-Hyuk Jang

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Li Kang

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Dong-Won Lee

    Department of Biomedical Sciences, Korea University, Ansan Hospital, Gyeonggi-do, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Do Young Hyeon

    School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Sun-Hee Lee

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Hye Eun Lee

    College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Tae-Lin Huh

    School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Sang Heon Suh

    Department of Internal Medicine, Chonnam National University Hospital, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Daehee Hwang

    Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. Kyunghee Byun

    School of Medicine, Gachon University, Incheon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  15. Hae-Chul Park

    Department of Biomedical Sciences, Korea University, Ansan Hospital, Gyeonggi-do, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. You Mie Lee

    Collage of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
    For correspondence
    lym@knu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5756-7169

Funding

National Research Foundation of Korea (NRF-2013R1A2A2A01068868)

  • You Mie Lee

National Research Foundation of Korea (NRF-2017R1A2B3002227)

  • You Mie Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gou Young Koh, Institute of Basic Science and Korea Advanced Institute of Science and Technology (KAIST), Korea (South), Republic of

Ethics

Animal experimentation: The animal handling and experimental procedures were strictly conducted as per the Guidelines for Care and Use of Laboratory Animals issued by the Institutional Ethical Animal Care Committee of Kyungpook National University

Version history

  1. Received: February 12, 2019
  2. Accepted: August 15, 2019
  3. Accepted Manuscript published: August 20, 2019 (version 1)
  4. Version of Record published: September 4, 2019 (version 2)

Copyright

© 2019, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,733
    Page views
  • 599
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myo-Hyeon Park
  2. Ae Kyung Kim
  3. Sarala Manandhar
  4. Su-Young Oh
  5. Gun-Hyuk Jang
  6. Li Kang
  7. Dong-Won Lee
  8. Do Young Hyeon
  9. Sun-Hee Lee
  10. Hye Eun Lee
  11. Tae-Lin Huh
  12. Sang Heon Suh
  13. Daehee Hwang
  14. Kyunghee Byun
  15. Hae-Chul Park
  16. You Mie Lee
(2019)
CCN1 interlinks integrin and Hippo pathway to autoregulate tip cell activity
eLife 8:e46012.
https://doi.org/10.7554/eLife.46012

Share this article

https://doi.org/10.7554/eLife.46012

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.