1. Biochemistry and Chemical Biology
  2. Neuroscience
Download icon

Mouse TRPA1 function and membrane localization is modulated by direct interactions with cholesterol

Research Article
  • Cited 22
  • Views 2,128
  • Annotations
Cite this article as: eLife 2019;8:e46084 doi: 10.7554/eLife.46084

Abstract

The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data has been provided for figures 1S1, 2S1, 3, 3S1, 3S3, 5, 7, 8.

Article and author information

Author details

  1. Justyna B Startek

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1131-1149
  2. Brett Boonen

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5026-3963
  3. Alejandro López-Requena

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Ariel Talavera

    Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Yeranddy A Alpizar

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1959-5393
  6. Debapriya Ghosh

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Nele Van Ranst

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Bernd Nilius

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas Voets

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5526-5821
  10. Karel Talavera

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    For correspondence
    karel.talavera@kuleuven.vib.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-138X

Funding

Research Council KU Leuven (GOA/14/11)

  • Karel Talavera

FWO (G070212N)

  • Karel Talavera

FWO (Postdoctoral Fellowship)

  • Yeranddy A Alpizar

Research Council KU Leuven (C14/18/086)

  • Karel Talavera

FWO (G0C7715N)

  • Karel Talavera

FWO (G0D0417N)

  • Karel Talavera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols were in accordance with the European Community and Belgian Governmental guidelines for the use and care of experimental animals (2010/63/EU, CE Off Jn8L358, LA12110551) and approved by the KU Leuven Ethical Committee Laboratory Animals (Permit Code: In vitro, Prof. Rudi Vennekens).

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Publication history

  1. Received: February 14, 2019
  2. Accepted: June 10, 2019
  3. Accepted Manuscript published: June 11, 2019 (version 1)
  4. Version of Record published: June 24, 2019 (version 2)

Copyright

© 2019, Startek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,128
    Page views
  • 347
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Astrid Kollewe et al.
    Research Article Updated

    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Fang Huang et al.
    Research Article

    The positive transcription elongation factor b (P-TEFb) is a critical co-activator for transcription of most cellular and viral genes, including those of HIV. While P-TEFb is regulated by 7SK snRNA in proliferating cells, P-TEFb is absent due to diminished levels of CycT1 in quiescent and terminally differentiated cells, which has remained unexplored. In these cells, we found that CycT1 not bound to CDK9 is rapidly degraded. Moreover, productive CycT1:CDK9 interactions are increased by PKC mediated phosphorylation of CycT1 in human cells. Conversely, dephosphorylation of CycT1 by PP1 reverses this process. Thus, PKC inhibitors or removal of PKC by chronic activation results in P-TEFb disassembly and CycT1 degradation. This finding not only recapitulates P-TEFb depletion in resting CD4+ T cells but also in anergic T cells. Importantly, our studies reveal mechanisms of P-TEFb inactivation underlying T cell quiescence, anergy, and exhaustion as well as proviral latency and terminally differentiated cells.