Mouse TRPA1 function and membrane localization is modulated by direct interactions with cholesterol

Abstract

The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data has been provided for figures 1S1, 2S1, 3, 3S1, 3S3, 5, 7, 8.

Article and author information

Author details

  1. Justyna B Startek

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1131-1149
  2. Brett Boonen

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5026-3963
  3. Alejandro López-Requena

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Ariel Talavera

    Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Yeranddy A Alpizar

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1959-5393
  6. Debapriya Ghosh

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Nele Van Ranst

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Bernd Nilius

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas Voets

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5526-5821
  10. Karel Talavera

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    For correspondence
    karel.talavera@kuleuven.vib.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3124-138X

Funding

Research Council KU Leuven (GOA/14/11)

  • Karel Talavera

FWO (G070212N)

  • Karel Talavera

FWO (Postdoctoral Fellowship)

  • Yeranddy A Alpizar

Research Council KU Leuven (C14/18/086)

  • Karel Talavera

FWO (G0C7715N)

  • Karel Talavera

FWO (G0D0417N)

  • Karel Talavera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols were in accordance with the European Community and Belgian Governmental guidelines for the use and care of experimental animals (2010/63/EU, CE Off Jn8L358, LA12110551) and approved by the KU Leuven Ethical Committee Laboratory Animals (Permit Code: In vitro, Prof. Rudi Vennekens).

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Publication history

  1. Received: February 14, 2019
  2. Accepted: June 10, 2019
  3. Accepted Manuscript published: June 11, 2019 (version 1)
  4. Version of Record published: June 24, 2019 (version 2)

Copyright

© 2019, Startek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,354
    Page views
  • 394
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justyna B Startek
  2. Brett Boonen
  3. Alejandro López-Requena
  4. Ariel Talavera
  5. Yeranddy A Alpizar
  6. Debapriya Ghosh
  7. Nele Van Ranst
  8. Bernd Nilius
  9. Thomas Voets
  10. Karel Talavera
(2019)
Mouse TRPA1 function and membrane localization is modulated by direct interactions with cholesterol
eLife 8:e46084.
https://doi.org/10.7554/eLife.46084

Further reading

    1. Biochemistry and Chemical Biology
    Mengyang Fan, Wenchao Lu ... Nathanael S Gray
    Research Article Updated

    The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03–69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03–69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03–69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03–69 led to an in vivo compatible compound MYF-03–176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.

    1. Biochemistry and Chemical Biology
    Lu Hu, Yang Sun ... Xu Wu
    Short Report Updated

    The TEA domain (TEAD) transcription factor forms a transcription co-activation complex with the key downstream effector of the Hippo pathway, YAP/TAZ. TEAD-YAP controls the expression of Hippo-responsive genes involved in cell proliferation, development, and tumorigenesis. Hyperactivation of TEAD-YAP activities is observed in many human cancers and is associated with cancer cell proliferation, survival, and immune evasion. Therefore, targeting the TEAD-YAP complex has emerged as an attractive therapeutic approach. We previously reported that the mammalian TEAD transcription factors (TEAD1–4) possess auto-palmitoylation activities and contain an evolutionarily conserved palmitate-binding pocket (PBP), which allows small-molecule modulation. Since then, several reversible and irreversible inhibitors have been reported by binding to PBP. Here, we report a new class of TEAD inhibitors with a novel binding mode. Representative analog TM2 shows potent inhibition of TEAD auto-palmitoylation both in vitro and in cells. Surprisingly, the co-crystal structure of the human TEAD2 YAP-binding domain (YBD) in complex with TM2 reveals that TM2 adopts an unexpected binding mode by occupying not only the hydrophobic PBP, but also a new side binding pocket formed by hydrophilic residues. RNA-seq analysis shows that TM2 potently and specifically suppresses TEAD-YAP transcriptional activities. Consistently, TM2 exhibits strong antiproliferation effects as a single agent or in combination with a MEK inhibitor in YAP-dependent cancer cells. These findings establish TM2 as a promising small-molecule inhibitor against TEAD-YAP activities and provide new insights for designing novel TEAD inhibitors with enhanced selectivity and potency.