The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation

Abstract

Applying pre-steady state kinetics to an Escherichia coli based reconstituted translation system we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants towards TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Mikael Holm

    Department of Cell and Molecular biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Chandra Sekhar Mandava

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Måns Ehrenberg

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Suparna Sanyal

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    suparna.sanyal@icm.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7124-792X

Funding

Swedish Research Council (2018-05498 (NT))

  • Suparna Sanyal

Carl Tryggers Stiftelse för Vetenskaplig Forskning (CTS 18: 338)

  • Suparna Sanyal

Wenner-Gren Foundation (UPD2017-0238)

  • Suparna Sanyal

Knut och Alice Wallenbergs Stiftelse (KAW 2011.0081 to RiboCORE)

  • Suparna Sanyal

Knut och Alice Wallenbergs Stiftelse (KAW 2017.0055)

  • Suparna Sanyal

Swedish Research Council (2016-06264 (Research Environment))

  • Suparna Sanyal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Version history

  1. Received: March 4, 2019
  2. Accepted: June 4, 2019
  3. Accepted Manuscript published: June 7, 2019 (version 1)
  4. Version of Record published: June 26, 2019 (version 2)

Copyright

© 2019, Holm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,328
    Page views
  • 179
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mikael Holm
  2. Chandra Sekhar Mandava
  3. Måns Ehrenberg
  4. Suparna Sanyal
(2019)
The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation
eLife 8:e46124.
https://doi.org/10.7554/eLife.46124

Share this article

https://doi.org/10.7554/eLife.46124

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.