Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states

  1. Hans Moldenhauer
  2. Ignacio Díaz-Franulic
  3. Horacio Poblete
  4. David Naranjo  Is a corresponding author
  1. Universidad de Valparaíso, Chile
  2. Universidad de Talca, Chile

Abstract

In-silico and in-vitro studies have made progress in understanding protein-protein complexes formation; however, the molecular mechanisms for their dissociation are unclear. Protein-protein complexes, lasting from microseconds to years, often involve induced-fit, challenging computational or kinetic analysis. Charybdotoxin (CTX), a peptide from the Leiurus scorpion venom, blocks voltage-gated K+-channels in a unique example of binding/unbinding simplicity. CTX plugs the external mouth of K+-channels pore, stopping K+-ion conduction, without inducing conformational changes. Conflicting with a tight binding, we show that external permeant ions enhance CTX-dissociation, implying a path connecting the pore, in the toxin-bound channel, with the external solution. This sensitivity is explained if CTX wobbles between several bound conformations, producing transient events that restore the electrical and ionic trans-pore gradients. Wobbling may originate from a network of contacts in the interaction interface that are in dynamic stochastic equilibria. These partially-bound intermediates could lead to distinct, and potentially manipulable, dissociation pathways.

Data availability

Data used for Figures 2 to 7 is available in dryad.org

The following data sets were generated

Article and author information

Author details

  1. Hans Moldenhauer

    Instituto de Neurociencia, Universidad de Valparaíso, Valpararaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  2. Ignacio Díaz-Franulic

    Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  3. Horacio Poblete

    Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Talca, Chile
    Competing interests
    The authors declare that no competing interests exist.
  4. David Naranjo

    Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
    For correspondence
    david.naranjo@uv.cl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3482-5126

Funding

Fondo Nacional de Desarrollo Científico y Tecnológico (3160321)

  • Hans Moldenhauer

Fondo Nacional de Desarrollo Científico y Tecnológico (3170599)

  • Ignacio Díaz-Franulic

Fondo Nacional de Desarrollo Científico y Tecnológico (1171155)

  • Horacio Poblete

Ministerio de Economía, Fomento y Turismo (MiNICAD)

  • Horacio Poblete

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Moldenhauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,626
    views
  • 184
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hans Moldenhauer
  2. Ignacio Díaz-Franulic
  3. Horacio Poblete
  4. David Naranjo
(2019)
Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states
eLife 8:e46170.
https://doi.org/10.7554/eLife.46170

Share this article

https://doi.org/10.7554/eLife.46170

Further reading

    1. Biochemistry and Chemical Biology
    Yingjie Sun, Changheng Li ... Youngnam N Jin
    Research Article

    Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug–protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs’ mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Raji E Joseph, Thomas E Wales ... Amy H Andreotti
    Research Advance

    Inhibition of Bruton’s tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.