Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states

  1. Hans Moldenhauer
  2. Ignacio Díaz-Franulic
  3. Horacio Poblete
  4. David Naranjo  Is a corresponding author
  1. Universidad de Valparaíso, Chile
  2. Universidad de Talca, Chile

Abstract

In-silico and in-vitro studies have made progress in understanding protein-protein complexes formation; however, the molecular mechanisms for their dissociation are unclear. Protein-protein complexes, lasting from microseconds to years, often involve induced-fit, challenging computational or kinetic analysis. Charybdotoxin (CTX), a peptide from the Leiurus scorpion venom, blocks voltage-gated K+-channels in a unique example of binding/unbinding simplicity. CTX plugs the external mouth of K+-channels pore, stopping K+-ion conduction, without inducing conformational changes. Conflicting with a tight binding, we show that external permeant ions enhance CTX-dissociation, implying a path connecting the pore, in the toxin-bound channel, with the external solution. This sensitivity is explained if CTX wobbles between several bound conformations, producing transient events that restore the electrical and ionic trans-pore gradients. Wobbling may originate from a network of contacts in the interaction interface that are in dynamic stochastic equilibria. These partially-bound intermediates could lead to distinct, and potentially manipulable, dissociation pathways.

Data availability

Data used for Figures 2 to 7 is available in dryad.org

The following data sets were generated

Article and author information

Author details

  1. Hans Moldenhauer

    Instituto de Neurociencia, Universidad de Valparaíso, Valpararaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  2. Ignacio Díaz-Franulic

    Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  3. Horacio Poblete

    Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Talca, Chile
    Competing interests
    The authors declare that no competing interests exist.
  4. David Naranjo

    Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
    For correspondence
    david.naranjo@uv.cl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3482-5126

Funding

Fondo Nacional de Desarrollo Científico y Tecnológico (3160321)

  • Hans Moldenhauer

Fondo Nacional de Desarrollo Científico y Tecnológico (3170599)

  • Ignacio Díaz-Franulic

Fondo Nacional de Desarrollo Científico y Tecnológico (1171155)

  • Horacio Poblete

Ministerio de Economía, Fomento y Turismo (MiNICAD)

  • Horacio Poblete

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: February 18, 2019
  2. Accepted: July 4, 2019
  3. Accepted Manuscript published: July 4, 2019 (version 1)
  4. Version of Record published: July 26, 2019 (version 2)

Copyright

© 2019, Moldenhauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,548
    views
  • 183
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hans Moldenhauer
  2. Ignacio Díaz-Franulic
  3. Horacio Poblete
  4. David Naranjo
(2019)
Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states
eLife 8:e46170.
https://doi.org/10.7554/eLife.46170

Share this article

https://doi.org/10.7554/eLife.46170

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.