Hippocampus: Getting the full picture
Electrodes have been used to excite and record electrical signals in the nervous system for decades. More recently other techniques, notably calcium imaging and optogenetics, have allowed neuroscientists to study a much wider range of phenomena in 'behaving' animals (i.e., animals that have not been anesthetized and are free to perform various tasks; Ziv et al., 2013; Kim et al., 2017; Stamatakis et al., 2018). Now, in eLife, Stephen Gomperts and colleagues at Massachusetts General Hospital – including Heng Zhou as first author – report how they have used a combination of electrode recordings and calcium imaging to study hippocampal neurons in mice engaged in learning and memory tasks (Zhou et al., 2019).
The hippocampus has a critical role in learning and memory. It is thought that signals sent along cholinergic neurons from other regions of the brain to the hippocampus place it in an 'information acquisition state' that is associated with the animal actively exploring its environment. These signals also modulate neuronal activity, including electrical excitations called theta oscillations, and the encoding of memory in the hippocampus (Hasselmo, 2006; Teles-Grilo Ruivo and Mellor, 2013). During theta oscillations, increases in the concentration of calcium ions can lead to changes in the strength of the synapses between neurons: this 'synaptic plasticity' is needed for the acquisition and storage of information in the hippocampus (Buzsáki, 2002). Later, a different hippocampal state, characterized by sharp waves and ripples (SWRs), is thought to replay and broadcast the information acquired to more permanent storage sites in the neocortex (Buzsáki, 2015). Unlike theta oscillations, which are generally smooth low-frequency waves, SWRs are more jagged and have higher frequencies; both single SWRs and trains of SWRs can be observed in the hippocampus.
To further study the cellular and circuit mechanisms engaged in these different functional states of the hippocampus, Zhou et al. used both electrode recordings and calcium imaging during the sleep-wake-cycle. As expected, the level of calcium activity in the hippocampus was highest during theta oscillations and lowest during sharp waves and ripples. Furthermore, although the timing of the calcium activity did synchronize with the ripples in SWRs, as previously thought (Malvache et al., 2016), the level of calcium activity only increased during trains of SWRs (and actually dropped during single SWRs). These are interesting results that will continue to fuel efforts to model the neural circuits in the hippocampus.
Zhou et al. also explored how calcium activity varied during the sleep cycle, and found that it was higher during rapid eye movement (REM) sleep than during slow wave sleep. Sleep is thought to have an important role in memory consolidation, with recently encoded memories being reactivated during slow wave sleep, and then consolidated during REM sleep (Sara, 2017). The latest findings suggest that different levels of calcium activity during the different phases of sleep could be key for memory consolidation.
Zhou et al. also studied how calcium activity was affected by theta oscillations and by signals sent along cholinergic neurons from the medial septum to the hippocampus. The cholinergic neurons were activated by expressing a chemogenetic receptor in the medial septum (Roth, 2016). This allowed the researchers to specifically activate the cholinergic neurons in the medial septum by administering the chemogenetic ligand to the animals. Activation of these neurons increased calcium activity in the hippocampus, but reduced sharp waves and ripples during periods of low mobility and sleep. Furthermore, using a drug to inhibit a subset of the receptors for cholinergic neurons reduced calcium activity while increasing sharp waves and ripples. The ability to record these two distinct signals, calcium activity and electrical oscillations and waves, revealed that calcium activity in the hippocampus depends on behavioral states, electrical activity, and cholinergic activation.
The work of Zhou et al. is representative of a novel wave of studies in systems neuroscience that is moving the field from its roots in electrophysiology to studies that involve recording and manipulating a wider range of biological phenomena. The present revolution in the field started more than 10 years ago with optogenetic tools capable of turning neurons on and off, and with neuronal imaging of 'head-fixed' animals (Kim et al., 2017; Stamatakis et al., 2018). It is now possible, as Zhou et al. have shown, to use head-mounted fluorescent mini-scopes to record cellular and circuit events in freely moving mice.
Moreover, in addition to allowing the activation and inactivation of specific neurons and neural circuits, a new generation of optogenetic and chemogenetic tools make it possible to manipulate specific molecular events in specific cells (not just neurons) in these circuits. These new tools are providing researchers with unprecedented access to functional states in circuits that had previously gone unrecognized. Zhou et al. have taken advantage of these advances to uncover a wealth of previously unknown interactions between phenomena traditionally probed in hippocampal research (i.e., electrophysiological states and cholinergic function) and phenomena revealed by the new techniques (i.e., calcium events) during a wide range of functional states, including quiet wakefulness, running, slow wave sleep and REM sleep. We can only wonder what we will continue to uncover as new tools allow us to dig deeper and see further into the functional complexity of brain circuits.
References
-
The role of acetylcholine in learning and memoryCurrent Opinion in Neurobiology 16:710–715.https://doi.org/10.1016/j.conb.2006.09.002
-
Integration of optogenetics with complementary methodologies in systems neuroscienceNature Reviews Neuroscience 18:222–235.https://doi.org/10.1038/nrn.2017.15
-
Sleep to rememberJournal of Neuroscience 37:457–463.https://doi.org/10.1523/JNEUROSCI.0297-16.2017
-
Cholinergic modulation of hippocampal network functionFrontiers in Synaptic Neuroscience 5:2.https://doi.org/10.3389/fnsyn.2013.00002
-
Long-term dynamics of CA1 hippocampal place codesNature Neuroscience 16:264–266.https://doi.org/10.1038/nn.3329
Article and author information
Author details
Publication history
Copyright
© 2019, Luchetti et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,829
- views
-
- 161
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.
-
- Neuroscience
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.