Hippocampus: Getting the full picture

A combination of old and new techniques have been used to reveal new details about the behavior of individual neurons across the sleep-wake-cycle.
  1. Alessandro Luchetti
  2. Ananya Chowdhury
  3. Alcino J Silva  Is a corresponding author
  1. University of California Los Angeles, United States

Electrodes have been used to excite and record electrical signals in the nervous system for decades. More recently other techniques, notably calcium imaging and optogenetics, have allowed neuroscientists to study a much wider range of phenomena in 'behaving' animals (i.e., animals that have not been anesthetized and are free to perform various tasks; Ziv et al., 2013; Kim et al., 2017; Stamatakis et al., 2018). Now, in eLife, Stephen Gomperts and colleagues at Massachusetts General Hospital – including Heng Zhou as first author – report how they have used a combination of electrode recordings and calcium imaging to study hippocampal neurons in mice engaged in learning and memory tasks (Zhou et al., 2019).

The hippocampus has a critical role in learning and memory. It is thought that signals sent along cholinergic neurons from other regions of the brain to the hippocampus place it in an 'information acquisition state' that is associated with the animal actively exploring its environment. These signals also modulate neuronal activity, including electrical excitations called theta oscillations, and the encoding of memory in the hippocampus (Hasselmo, 2006; Teles-Grilo Ruivo and Mellor, 2013). During theta oscillations, increases in the concentration of calcium ions can lead to changes in the strength of the synapses between neurons: this 'synaptic plasticity' is needed for the acquisition and storage of information in the hippocampus (Buzsáki, 2002). Later, a different hippocampal state, characterized by sharp waves and ripples (SWRs), is thought to replay and broadcast the information acquired to more permanent storage sites in the neocortex (Buzsáki, 2015). Unlike theta oscillations, which are generally smooth low-frequency waves, SWRs are more jagged and have higher frequencies; both single SWRs and trains of SWRs can be observed in the hippocampus.

To further study the cellular and circuit mechanisms engaged in these different functional states of the hippocampus, Zhou et al. used both electrode recordings and calcium imaging during the sleep-wake-cycle. As expected, the level of calcium activity in the hippocampus was highest during theta oscillations and lowest during sharp waves and ripples. Furthermore, although the timing of the calcium activity did synchronize with the ripples in SWRs, as previously thought (Malvache et al., 2016), the level of calcium activity only increased during trains of SWRs (and actually dropped during single SWRs). These are interesting results that will continue to fuel efforts to model the neural circuits in the hippocampus.

Zhou et al. also explored how calcium activity varied during the sleep cycle, and found that it was higher during rapid eye movement (REM) sleep than during slow wave sleep. Sleep is thought to have an important role in memory consolidation, with recently encoded memories being reactivated during slow wave sleep, and then consolidated during REM sleep (Sara, 2017). The latest findings suggest that different levels of calcium activity during the different phases of sleep could be key for memory consolidation.

Zhou et al. also studied how calcium activity was affected by theta oscillations and by signals sent along cholinergic neurons from the medial septum to the hippocampus. The cholinergic neurons were activated by expressing a chemogenetic receptor in the medial septum (Roth, 2016). This allowed the researchers to specifically activate the cholinergic neurons in the medial septum by administering the chemogenetic ligand to the animals. Activation of these neurons increased calcium activity in the hippocampus, but reduced sharp waves and ripples during periods of low mobility and sleep. Furthermore, using a drug to inhibit a subset of the receptors for cholinergic neurons reduced calcium activity while increasing sharp waves and ripples. The ability to record these two distinct signals, calcium activity and electrical oscillations and waves, revealed that calcium activity in the hippocampus depends on behavioral states, electrical activity, and cholinergic activation.

The work of Zhou et al. is representative of a novel wave of studies in systems neuroscience that is moving the field from its roots in electrophysiology to studies that involve recording and manipulating a wider range of biological phenomena. The present revolution in the field started more than 10 years ago with optogenetic tools capable of turning neurons on and off, and with neuronal imaging of 'head-fixed' animals (Kim et al., 2017; Stamatakis et al., 2018). It is now possible, as Zhou et al. have shown, to use head-mounted fluorescent mini-scopes to record cellular and circuit events in freely moving mice.

Moreover, in addition to allowing the activation and inactivation of specific neurons and neural circuits, a new generation of optogenetic and chemogenetic tools make it possible to manipulate specific molecular events in specific cells (not just neurons) in these circuits. These new tools are providing researchers with unprecedented access to functional states in circuits that had previously gone unrecognized. Zhou et al. have taken advantage of these advances to uncover a wealth of previously unknown interactions between phenomena traditionally probed in hippocampal research (i.e., electrophysiological states and cholinergic function) and phenomena revealed by the new techniques (i.e., calcium events) during a wide range of functional states, including quiet wakefulness, running, slow wave sleep and REM sleep. We can only wonder what we will continue to uncover as new tools allow us to dig deeper and see further into the functional complexity of brain circuits.


Article and author information

Author details

  1. Alessandro Luchetti

    Alessandro Luchetti is in the Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, the Integrative Center for Learning and Memory, and the Brain Research Institute, University of California Los Angeles, Los Angeles, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5810-9303
  2. Ananya Chowdhury

    Ananya Chowdhury is in the Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, the Integrative Center for Learning and Memory, and the Brain Research Institute, University of California Los Angeles, Los Angeles, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2906-4257
  3. Alcino J Silva

    Alcino J Silva is in the Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, the Integrative Center for Learning and Memory, and the Brain Research Institute, University of California Los Angeles, Los Angeles, United States

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1587-4558

Publication history

  1. Version of Record published: March 26, 2019 (version 1)


© 2019, Luchetti et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,827
  • 161
  • 0

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro Luchetti
  2. Ananya Chowdhury
  3. Alcino J Silva
Hippocampus: Getting the full picture
eLife 8:e46279.
  1. Further reading

Further reading

    1. Neuroscience
    Ece Kaya, Sonja A Kotz, Molly J Henry
    Research Article

    Dynamic attending theory proposes that the ability to track temporal cues in the auditory environment is governed by entrainment, the synchronization between internal oscillations and regularities in external auditory signals. Here, we focused on two key properties of internal oscillators: their preferred rate, the default rate in the absence of any input; and their flexibility, how they adapt to changes in rhythmic context. We developed methods to estimate oscillator properties (Experiment 1) and compared the estimates across tasks and individuals (Experiment 2). Preferred rates, estimated as the stimulus rates with peak performance, showed a harmonic relationship across measurements and were correlated with individuals’ spontaneous motor tempo. Estimates from motor tasks were slower than those from the perceptual task, and the degree of slowing was consistent for each individual. Task performance decreased with trial-to-trial changes in stimulus rate, and responses on individual trials were biased toward the preceding trial’s stimulus properties. Flexibility, quantified as an individual’s ability to adapt to faster-than-previous rates, decreased with age. These findings show domain-specific rate preferences for the assumed oscillatory system underlying rhythm perception and production, and that this system loses its ability to flexibly adapt to changes in the external rhythmic context during aging.

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.