1. Microbiology and Infectious Disease
Download icon

A dedicated diribonucleotidase resolves a key bottleneck as the terminal step of RNA degradation

  1. Soo-Kyoung Kim
  2. Justin D Lormand
  3. Cordelia A Weiss
  4. Karin A Eger
  5. Husan Turdiev
  6. Asan Turdiev
  7. Wade C Winkler  Is a corresponding author
  8. Holger Sondermann  Is a corresponding author
  9. Vincent T Lee  Is a corresponding author
  1. University of Maryland, United States
  2. Cornell University, United States
Research Article
  • Cited 5
  • Views 1,312
  • Annotations
Cite this article as: eLife 2019;8:e46313 doi: 10.7554/eLife.46313

Abstract

Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness. However, the molecular basis of Orn's unique cellular function remained unclear. Here we show that Orn exhibits exquisite substrate preference for diribonucleotides. Crystal structures of substrate-bound Orn reveal an active site optimized for diribonucleotides. While other cellular RNases process oligoribonucleotides down to diribonucleotide entities, Orn is the one and only diribonucleotidase that completes the terminal step of RNA degradation. Together, our studies indicate RNA degradation as a step-wise process with a dedicated enzyme for the clearance of a specific intermediate pool, diribonucleotides, that affects cellular physiology and viability.

Article and author information

Author details

  1. Soo-Kyoung Kim

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin D Lormand

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cordelia A Weiss

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karin A Eger

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Husan Turdiev

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Asan Turdiev

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wade C Winkler

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    wwinkler@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Holger Sondermann

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    For correspondence
    hs293@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2211-6234
  9. Vincent T Lee

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    vtlee@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3593-0318

Funding

National Institute of Allergy and Infectious Diseases (R01AI110740)

  • Vincent T Lee

National Institute of General Medical Sciences (R01GM123609)

  • Holger Sondermann

National Science Foundation (MCB1051440)

  • Wade C Winkler

Cystic Fibrosis Foundation (LEE16G0)

  • Vincent T Lee

National Institute of Diabetes and Digestive and Kidney Diseases (R01AI110740)

  • Vincent T Lee

National Institute of General Medical Sciences (T32-GM080201)

  • Cordelia A Weiss

National Institute of Allergy and Infectious Diseases (R01AI142400)

  • Wade C Winkler
  • Holger Sondermann
  • Vincent T Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bryce E Nickels, Rutgers University, United States

Publication history

  1. Received: February 22, 2019
  2. Accepted: June 14, 2019
  3. Accepted Manuscript published: June 21, 2019 (version 1)
  4. Version of Record published: July 8, 2019 (version 2)
  5. Version of Record updated: July 10, 2019 (version 3)
  6. Version of Record updated: July 16, 2019 (version 4)

Copyright

© 2019, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,312
    Page views
  • 175
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Microbiology and Infectious Disease
    Tjibbe Donker
    Insight

    Moving patients between wards and prescribing high levels of antibiotics increases the spread of bacterial infections that are resistant to treatment in hospitals.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    James B Eaglesham et al.
    Research Article Updated

    DNA viruses in the family Poxviridae encode poxin enzymes that degrade the immune second messenger 2′3′-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2′3′-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA-virus polyproteins. Our data suggest widespread 2′3′-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.