A dedicated diribonucleotidase resolves a key bottleneck as the terminal step of RNA degradation

  1. Soo-Kyoung Kim
  2. Justin D Lormand
  3. Cordelia A Weiss
  4. Karin A Eger
  5. Husan Turdiev
  6. Asan Turdiev
  7. Wade C Winkler  Is a corresponding author
  8. Holger Sondermann  Is a corresponding author
  9. Vincent T Lee  Is a corresponding author
  1. University of Maryland, United States
  2. Cornell University, United States

Abstract

Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness. However, the molecular basis of Orn's unique cellular function remained unclear. Here we show that Orn exhibits exquisite substrate preference for diribonucleotides. Crystal structures of substrate-bound Orn reveal an active site optimized for diribonucleotides. While other cellular RNases process oligoribonucleotides down to diribonucleotide entities, Orn is the one and only diribonucleotidase that completes the terminal step of RNA degradation. Together, our studies indicate RNA degradation as a step-wise process with a dedicated enzyme for the clearance of a specific intermediate pool, diribonucleotides, that affects cellular physiology and viability.

Data availability

The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.rcsb.org (PDB ID codes 6N6A, 6N6C, 6N6D, 6N6E, 6N6F, 6N6G, 6N6H, 6N6I, 6N6J, and 6N6K). Source data files have been provided for Figures.

The following data sets were generated

Article and author information

Author details

  1. Soo-Kyoung Kim

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin D Lormand

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cordelia A Weiss

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karin A Eger

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Husan Turdiev

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Asan Turdiev

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wade C Winkler

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    wwinkler@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Holger Sondermann

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    For correspondence
    hs293@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2211-6234
  9. Vincent T Lee

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    vtlee@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3593-0318

Funding

National Institute of Allergy and Infectious Diseases (R01AI110740)

  • Vincent T Lee

National Institute of General Medical Sciences (R01GM123609)

  • Holger Sondermann

National Science Foundation (MCB1051440)

  • Wade C Winkler

Cystic Fibrosis Foundation (LEE16G0)

  • Vincent T Lee

National Institute of Diabetes and Digestive and Kidney Diseases (R01AI110740)

  • Vincent T Lee

National Institute of General Medical Sciences (T32-GM080201)

  • Cordelia A Weiss

National Institute of Allergy and Infectious Diseases (R01AI142400)

  • Wade C Winkler
  • Holger Sondermann
  • Vincent T Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bryce E Nickels, Rutgers University, United States

Publication history

  1. Received: February 22, 2019
  2. Accepted: June 14, 2019
  3. Accepted Manuscript published: June 21, 2019 (version 1)
  4. Version of Record published: July 8, 2019 (version 2)
  5. Version of Record updated: July 10, 2019 (version 3)
  6. Version of Record updated: July 16, 2019 (version 4)
  7. Version of Record updated: January 28, 2022 (version 5)

Copyright

© 2019, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,701
    Page views
  • 210
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Soo-Kyoung Kim
  2. Justin D Lormand
  3. Cordelia A Weiss
  4. Karin A Eger
  5. Husan Turdiev
  6. Asan Turdiev
  7. Wade C Winkler
  8. Holger Sondermann
  9. Vincent T Lee
(2019)
A dedicated diribonucleotidase resolves a key bottleneck as the terminal step of RNA degradation
eLife 8:e46313.
https://doi.org/10.7554/eLife.46313

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ceri Alan Fielding et al.
    Research Article Updated

    The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.