HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors

  1. Pratibha C Koneru
  2. Ashwanth C Francis
  3. Nanjie Deng
  4. Stephanie V Rebensburg
  5. Ashley C Hoyte
  6. Jared Lindenberger
  7. Daniel Adu-Ampratwum
  8. Ross C Larue
  9. Michael F Wempe
  10. Alan N Engelman
  11. Dmitry Lyumkis
  12. James R Fuchs
  13. Ronald M Levy
  14. Gregory B Melikyan
  15. Mamuka Kvaratskhelia  Is a corresponding author
  1. University of Colorado School of Medicine, United States
  2. Emory University, United States
  3. Pace University, United States
  4. The Ohio State University, United States
  5. University of Colorado Denver, United States
  6. Dana-Farber Cancer Institute, United States
  7. Salk Institute for Biological Studies, United States
  8. Temple University, United States

Abstract

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10-fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.

Data availability

Diffraction data have been deposited in PDB under the accession code 6NUJ

The following data sets were generated

Article and author information

Author details

  1. Pratibha C Koneru

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashwanth C Francis

    Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nanjie Deng

    Department of Chemistry and Physical Sciences, Pace University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie V Rebensburg

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashley C Hoyte

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jared Lindenberger

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Adu-Ampratwum

    College of Pharmacy, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9392-2431
  8. Ross C Larue

    College of Pharmacy, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael F Wempe

    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alan N Engelman

    Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dmitry Lyumkis

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8124-7472
  12. James R Fuchs

    College of Pharmacy, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ronald M Levy

    Department of Chemistry, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8696-5177
  14. Gregory B Melikyan

    Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Mamuka Kvaratskhelia

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    MAMUKA.KVARATSKHELIA@UCDENVER.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3800-0033

Funding

National Institutes of Health (U54GM103368)

  • Mamuka Kvaratskhelia

National Institutes of Health (R01AI062520)

  • Mamuka Kvaratskhelia

National Institutes of Health (KL2 TR001068)

  • Ross C Larue

National Institutes of Health (R37AI039394)

  • Alan N Engelman

National Institutes of Health (R01AI143649)

  • Mamuka Kvaratskhelia

National Institutes of Health (R01AI129862)

  • Gregory B Melikyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Koneru et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,143
    views
  • 409
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pratibha C Koneru
  2. Ashwanth C Francis
  3. Nanjie Deng
  4. Stephanie V Rebensburg
  5. Ashley C Hoyte
  6. Jared Lindenberger
  7. Daniel Adu-Ampratwum
  8. Ross C Larue
  9. Michael F Wempe
  10. Alan N Engelman
  11. Dmitry Lyumkis
  12. James R Fuchs
  13. Ronald M Levy
  14. Gregory B Melikyan
  15. Mamuka Kvaratskhelia
(2019)
HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors
eLife 8:e46344.
https://doi.org/10.7554/eLife.46344

Share this article

https://doi.org/10.7554/eLife.46344

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.