HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors

  1. Pratibha C Koneru
  2. Ashwanth C Francis
  3. Nanjie Deng
  4. Stephanie V Rebensburg
  5. Ashley C Hoyte
  6. Jared Lindenberger
  7. Daniel Adu-Ampratwum
  8. Ross C Larue
  9. Michael F Wempe
  10. Alan N Engelman
  11. Dmitry Lyumkis
  12. James R Fuchs
  13. Ronald M Levy
  14. Gregory B Melikyan
  15. Mamuka Kvaratskhelia  Is a corresponding author
  1. University of Colorado School of Medicine, United States
  2. Emory University, United States
  3. Pace University, United States
  4. The Ohio State University, United States
  5. University of Colorado Denver, United States
  6. Dana-Farber Cancer Institute, United States
  7. Salk Institute for Biological Studies, United States
  8. Temple University, United States

Abstract

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10-fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.

Data availability

Diffraction data have been deposited in PDB under the accession code 6NUJ

The following data sets were generated

Article and author information

Author details

  1. Pratibha C Koneru

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashwanth C Francis

    Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nanjie Deng

    Department of Chemistry and Physical Sciences, Pace University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie V Rebensburg

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashley C Hoyte

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jared Lindenberger

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Adu-Ampratwum

    College of Pharmacy, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9392-2431
  8. Ross C Larue

    College of Pharmacy, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael F Wempe

    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alan N Engelman

    Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dmitry Lyumkis

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8124-7472
  12. James R Fuchs

    College of Pharmacy, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ronald M Levy

    Department of Chemistry, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8696-5177
  14. Gregory B Melikyan

    Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Mamuka Kvaratskhelia

    Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    MAMUKA.KVARATSKHELIA@UCDENVER.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3800-0033

Funding

National Institutes of Health (U54GM103368)

  • Mamuka Kvaratskhelia

National Institutes of Health (R01AI062520)

  • Mamuka Kvaratskhelia

National Institutes of Health (KL2 TR001068)

  • Ross C Larue

National Institutes of Health (R37AI039394)

  • Alan N Engelman

National Institutes of Health (R01AI143649)

  • Mamuka Kvaratskhelia

National Institutes of Health (R01AI129862)

  • Gregory B Melikyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Koneru et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,155
    views
  • 411
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pratibha C Koneru
  2. Ashwanth C Francis
  3. Nanjie Deng
  4. Stephanie V Rebensburg
  5. Ashley C Hoyte
  6. Jared Lindenberger
  7. Daniel Adu-Ampratwum
  8. Ross C Larue
  9. Michael F Wempe
  10. Alan N Engelman
  11. Dmitry Lyumkis
  12. James R Fuchs
  13. Ronald M Levy
  14. Gregory B Melikyan
  15. Mamuka Kvaratskhelia
(2019)
HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors
eLife 8:e46344.
https://doi.org/10.7554/eLife.46344

Share this article

https://doi.org/10.7554/eLife.46344

Further reading

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article Updated

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.