Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network

  1. Louis Kang  Is a corresponding author
  2. Michael R DeWeese
  1. University of California, Berkeley, United States

Abstract

Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays.

Data availability

Source code for the simulations have been included as supporting files.

Article and author information

Author details

  1. Louis Kang

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    louis.kang@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5702-2740
  2. Michael R DeWeese

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley (Postdoctoral fellowship)

  • Louis Kang

Army Research Office (W911NF-13-1-0390)

  • Michael R DeWeese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sachin Deshmukh, Indian Institute of Science Bangalore, India

Version history

  1. Received: March 1, 2019
  2. Accepted: November 15, 2019
  3. Accepted Manuscript published: November 18, 2019 (version 1)
  4. Version of Record published: December 9, 2019 (version 2)

Copyright

© 2019, Kang & DeWeese

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,754
    Page views
  • 235
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louis Kang
  2. Michael R DeWeese
(2019)
Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network
eLife 8:e46351.
https://doi.org/10.7554/eLife.46351

Further reading

    1. Cell Biology
    2. Neuroscience
    Elisabeth Jongsma, Anita Goyala ... Collin Yvès Ewald
    Research Article Updated

    The amyloid beta (Aβ) plaques found in Alzheimer’s disease (AD) patients’ brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.

    1. Computational and Systems Biology
    2. Neuroscience
    Marjorie Xie, Samuel P Muscinelli ... Ashok Litwin-Kumar
    Research Article Updated

    The cerebellar granule cell layer has inspired numerous theoretical models of neural representations that support learned behaviors, beginning with the work of Marr and Albus. In these models, granule cells form a sparse, combinatorial encoding of diverse sensorimotor inputs. Such sparse representations are optimal for learning to discriminate random stimuli. However, recent observations of dense, low-dimensional activity across granule cells have called into question the role of sparse coding in these neurons. Here, we generalize theories of cerebellar learning to determine the optimal granule cell representation for tasks beyond random stimulus discrimination, including continuous input-output transformations as required for smooth motor control. We show that for such tasks, the optimal granule cell representation is substantially denser than predicted by classical theories. Our results provide a general theory of learning in cerebellum-like systems and suggest that optimal cerebellar representations are task-dependent.