Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain

  1. Zhicheng Zuo
  2. Ashwini Zolekar
  3. Kesavan Babu
  4. Victor JT Lin
  5. Hamed S Hayatshahi
  6. Rakhi Rajan
  7. Yu-Chieh Wang  Is a corresponding author
  8. Jin Liu  Is a corresponding author
  1. Shanghai University of Engineering Science, China
  2. University of North Texas Health Science Center, United States
  3. University of Oklahoma, United States

Abstract

The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (SpyCas9), along with a programmable single-guide RNA (sgRNA), has been exploited as a significant genome-editing tool. Despite the recent advances in determining the SpyCas9 structures and DNA cleavage mechanism, the cleavage-competent conformation of the catalytic HNH nuclease domain of SpyCas9 remains largely elusive and debatable. By integrating computational and experimental approaches, we unveiled and validated the activated Cas9-sgRNA-DNA ternary complex in which the HNH domain is neatly poised for cleaving the target DNA strand. In this catalysis model, the HNH employs the catalytic triad of D839-H840-N863 for cleavage catalysis, rather than previously implicated D839-H840-D861, D839-H840-N854, D837-D839-H840, or D839-H840-D861-N863. Our study contributes critical information to defining the catalytic conformation of the HNH domain and advances the knowledge about the conformational activation underlying Cas9-mediated DNA cleavage.

Data availability

The data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 2.

Article and author information

Author details

  1. Zhicheng Zuo

    College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashwini Zolekar

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kesavan Babu

    Department of Chemistry and Biochemistry, University of Oklahoma, Norman, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor JT Lin

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hamed S Hayatshahi

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8639-7130
  6. Rakhi Rajan

    Department of Chemistry and Biochemistry, University of Oklahoma, Norman, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu-Chieh Wang

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    For correspondence
    yu-chieh.wang@unthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Jin Liu

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    For correspondence
    jin.liu@unthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1067-4063

Funding

Shanghai Municipal Education Commission (Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning)

  • Zhicheng Zuo

National Science Foundation (MCB-1716423)

  • Rakhi Rajan

National Institute of General Medical Sciences (P20GM103640)

  • Rakhi Rajan

University of North Texas Health Science Center (Start-up Fund and Faculty Pilot Grant)

  • Yu-Chieh Wang

University of North Texas Health Science Center (Start-up Fund and Basic Research Seed Grant)

  • Jin Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zuo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,584
    views
  • 504
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhicheng Zuo
  2. Ashwini Zolekar
  3. Kesavan Babu
  4. Victor JT Lin
  5. Hamed S Hayatshahi
  6. Rakhi Rajan
  7. Yu-Chieh Wang
  8. Jin Liu
(2019)
Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain
eLife 8:e46500.
https://doi.org/10.7554/eLife.46500

Share this article

https://doi.org/10.7554/eLife.46500

Further reading

    1. Structural Biology and Molecular Biophysics
    Giuseppe Deganutti, Ludovico Pipito ... Christopher Arthur Reynolds
    Research Article

    The structural basis for the pharmacology of human G protein-coupled receptors (GPCRs), the most abundant membrane proteins and the target of about 35% of approved drugs, is still a matter of intense study. What makes GPCRs challenging to study is the inherent flexibility and the metastable nature of interaction with extra- and intracellular partners that drive their effects. Here, we present a molecular dynamics (MD) adaptive sampling algorithm, namely multiple walker supervised molecular dynamics (mwSuMD), to address complex structural transitions involving GPCRs without energy input. We first report the binding and unbinding of the vasopressin peptide from its receptor V2. Successively, we present the complete transition of the glucagon-like peptide-1 receptor (GLP-1R) from inactive to active, agonist and Gs-bound state, and the guanosine diphosphate (GDP) release from Gs. To our knowledge, this is the first time the whole sequence of events leading from an inactive GPCR to the GDP release is simulated without any energy bias. We demonstrate that mwSuMD can address complex binding processes intrinsically linked to protein dynamics out of reach of classic MD.

    1. Structural Biology and Molecular Biophysics
    Mia L Abramsson, Robin A Corey ... Michael Landreh
    Research Article

    Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.