Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain

  1. Zhicheng Zuo
  2. Ashwini Zolekar
  3. Kesavan Babu
  4. Victor JT Lin
  5. Hamed S Hayatshahi
  6. Rakhi Rajan
  7. Yu-Chieh Wang  Is a corresponding author
  8. Jin Liu  Is a corresponding author
  1. Shanghai University of Engineering Science, China
  2. University of North Texas Health Science Center, United States
  3. University of Oklahoma, United States

Abstract

The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (SpyCas9), along with a programmable single-guide RNA (sgRNA), has been exploited as a significant genome-editing tool. Despite the recent advances in determining the SpyCas9 structures and DNA cleavage mechanism, the cleavage-competent conformation of the catalytic HNH nuclease domain of SpyCas9 remains largely elusive and debatable. By integrating computational and experimental approaches, we unveiled and validated the activated Cas9-sgRNA-DNA ternary complex in which the HNH domain is neatly poised for cleaving the target DNA strand. In this catalysis model, the HNH employs the catalytic triad of D839-H840-N863 for cleavage catalysis, rather than previously implicated D839-H840-D861, D839-H840-N854, D837-D839-H840, or D839-H840-D861-N863. Our study contributes critical information to defining the catalytic conformation of the HNH domain and advances the knowledge about the conformational activation underlying Cas9-mediated DNA cleavage.

Data availability

The data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 2.

Article and author information

Author details

  1. Zhicheng Zuo

    College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashwini Zolekar

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kesavan Babu

    Department of Chemistry and Biochemistry, University of Oklahoma, Norman, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor JT Lin

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hamed S Hayatshahi

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8639-7130
  6. Rakhi Rajan

    Department of Chemistry and Biochemistry, University of Oklahoma, Norman, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu-Chieh Wang

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    For correspondence
    yu-chieh.wang@unthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Jin Liu

    Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, United States
    For correspondence
    jin.liu@unthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1067-4063

Funding

Shanghai Municipal Education Commission (Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning)

  • Zhicheng Zuo

National Science Foundation (MCB-1716423)

  • Rakhi Rajan

National Institute of General Medical Sciences (P20GM103640)

  • Rakhi Rajan

University of North Texas Health Science Center (Start-up Fund and Faculty Pilot Grant)

  • Yu-Chieh Wang

University of North Texas Health Science Center (Start-up Fund and Basic Research Seed Grant)

  • Jin Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Blake Wiedenheft, Montana State University, United States

Version history

  1. Received: March 1, 2019
  2. Accepted: July 21, 2019
  3. Accepted Manuscript published: July 30, 2019 (version 1)
  4. Version of Record published: August 22, 2019 (version 2)

Copyright

© 2019, Zuo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,432
    views
  • 472
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhicheng Zuo
  2. Ashwini Zolekar
  3. Kesavan Babu
  4. Victor JT Lin
  5. Hamed S Hayatshahi
  6. Rakhi Rajan
  7. Yu-Chieh Wang
  8. Jin Liu
(2019)
Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain
eLife 8:e46500.
https://doi.org/10.7554/eLife.46500

Share this article

https://doi.org/10.7554/eLife.46500

Further reading

    1. Structural Biology and Molecular Biophysics
    Abdul Wasim, Sneha Menon, Jagannath Mondal
    Research Article

    Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson’s disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.