Myosin II isoforms play distinct roles in adherens junction biogenesis
Abstract
Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodelling of AJ. Here, we investigated the role of myosinII isoforms in epithelial junction assembly. Myosin IIA (NMIIA) and Myosin IIB (NMIIB) differentially regulate biogenesis of adherens junction through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for the main figures and figure supplements.
Article and author information
Author details
Funding
Seventh Framework Programme (CoG-617233)
- Benoit Ladoux
Agence Nationale de la Recherche (ANR-17-CE13-0013)
- René-Marc Mège
Agence Nationale de la Recherche (ANR-10-INBS-04)
- René-Marc Mège
- Benoit Ladoux
Agence Nationale de la Recherche (ANR‐11‐LABX‐0071)
- René-Marc Mège
- Benoit Ladoux
Agence Nationale de la Recherche (ANR-11-LABX-0071)
- Benoit Ladoux
Agence Nationale de la Recherche (ANR-17-CE13-0012)
- Benoit Ladoux
Ligue Contre le Cancer (Equipe Labellisée)
- René-Marc Mège
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Heuze et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,075
- views
-
- 636
- downloads
-
- 74
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 74
- citations for umbrella DOI https://doi.org/10.7554/eLife.46599