Myosin II isoforms play distinct roles in adherens junction biogenesis

  1. Mélina L Heuze  Is a corresponding author
  2. Gautham Sankara
  3. Joseph D'Alessandro
  4. Victor Cellerin
  5. Tien Dang
  6. David S Williams
  7. Jan CM Van Hest
  8. Philippe Marcq
  9. René-Marc Mège  Is a corresponding author
  10. Benoit Ladoux  Is a corresponding author
  1. CNRS, France
  2. Swansea University, United Kingdom
  3. Eindhoven University of Technology, Netherlands
  4. Sorbonne Université, France

Abstract

Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodelling of AJ. Here, we investigated the role of myosinII isoforms in epithelial junction assembly. Myosin IIA (NMIIA) and Myosin IIB (NMIIB) differentially regulate biogenesis of adherens junction through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for the main figures and figure supplements.

Article and author information

Author details

  1. Mélina L Heuze

    Institut Jacques Monod, CNRS, Paris, France
    For correspondence
    melina.heuze@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4271-2706
  2. Gautham Sankara

    Institut Jacques Monod, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph D'Alessandro

    Institut Jacques Monod, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1585-3255
  4. Victor Cellerin

    Institut Jacques Monod, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Tien Dang

    Institut Jacques Monod, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. David S Williams

    Department of Chemistry, Swansea University, Swansea, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan CM Van Hest

    Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Philippe Marcq

    Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. René-Marc Mège

    Institut Jacques Monod, CNRS, Paris, France
    For correspondence
    rene-marc.mege@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8128-5543
  10. Benoit Ladoux

    Institut Jacques Monod, CNRS, Paris, France
    For correspondence
    benoit.ladoux@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2086-1556

Funding

Seventh Framework Programme (CoG-617233)

  • Benoit Ladoux

Agence Nationale de la Recherche (ANR-17-CE13-0013)

  • René-Marc Mège

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • René-Marc Mège
  • Benoit Ladoux

Agence Nationale de la Recherche (ANR‐11‐LABX‐0071)

  • René-Marc Mège
  • Benoit Ladoux

Agence Nationale de la Recherche (ANR-11-LABX-0071)

  • Benoit Ladoux

Agence Nationale de la Recherche (ANR-17-CE13-0012)

  • Benoit Ladoux

Ligue Contre le Cancer (Equipe Labellisée)

  • René-Marc Mège

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Heuze et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,933
    views
  • 625
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mélina L Heuze
  2. Gautham Sankara
  3. Joseph D'Alessandro
  4. Victor Cellerin
  5. Tien Dang
  6. David S Williams
  7. Jan CM Van Hest
  8. Philippe Marcq
  9. René-Marc Mège
  10. Benoit Ladoux
(2019)
Myosin II isoforms play distinct roles in adherens junction biogenesis
eLife 8:e46599.
https://doi.org/10.7554/eLife.46599

Share this article

https://doi.org/10.7554/eLife.46599

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.