Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation

  1. Myra Hosmillo
  2. Jia Lu
  3. Michael R McAllaster
  4. James B Eaglesham
  5. Xinjie Wang
  6. Edward Emmott
  7. Patricia Domingues
  8. Yasmin Chaudhry
  9. Tim J Fitzmaurice
  10. Matthew KH Tung
  11. Marc Dominik Panas
  12. Gerald McInerney
  13. Nicolas Locker
  14. Craig B Wilen  Is a corresponding author
  15. Ian G Goodfellow  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Washington University School of Medicine, United States
  3. Karolinska Institutet, Sweden
  4. University of Surrey, United Kingdom
  5. Yale School of Medicine, United States

Abstract

Knowledge of the host factors required for norovirus replication has been hindered by the challenges associated with culturing human noroviruses. We have combined proteomic analysis of the viral translation and replication complexes with a CRISPR screen, to identify host factors required for norovirus infection. The core stress granule component G3BP1 was identified as a host factor essential for efficient human and murine norovirus infection, demonstrating a conserved function across the Norovirus genus. Furthermore, we show that G3BP1 functions in the novel paradigm of viral VPg-dependent translation initiation, contributing to the assembly of translation complexes on the VPg-linked viral positive sense RNA genome by facilitating ribosome recruitment. Our data uncovers a novel function for G3BP1 in the life cycle of positive sense RNA viruses and identifies the first host factor with pan-norovirus pro-viral activity.

Data availability

VPg proteomics raw data, search results and FASTA files can be found as part of PRIDE submission PXD007585. Flag-virus proteomics raw data, search results and FASTA files can be found as part of PRIDE submission PXD011779.

The following data sets were generated

Article and author information

Author details

  1. Myra Hosmillo

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3514-7681
  2. Jia Lu

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael R McAllaster

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James B Eaglesham

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinjie Wang

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Edward Emmott

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Patricia Domingues

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Yasmin Chaudhry

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Tim J Fitzmaurice

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1403-2495
  10. Matthew KH Tung

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Marc Dominik Panas

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7373-0341
  12. Gerald McInerney

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Nicolas Locker

    School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Craig B Wilen

    Department of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, United States
    For correspondence
    craig.wilen@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Ian G Goodfellow

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ig299@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9483-510X

Funding

Wellcome (207498/Z/17/Z)

  • Myra Hosmillo
  • Jia Lu
  • James B Eaglesham
  • Xinjie Wang
  • Edward Emmott
  • Patricia Domingues
  • Yasmin Chaudhry
  • Tim J Fitzmaurice
  • Matthew KH Tung
  • Ian G Goodfellow

National Institutes of Health (AI128043)

  • Craig B Wilen

Biotechnology and Biological Sciences Research Council (BB/N001176/1)

  • Jia Lu
  • Ian G Goodfellow

Wellcome (104914/Z/14/Z)

  • Ian G Goodfellow

Burroughs Wellcome Fund

  • Craig B Wilen

Churchill College, University of Cambridge

  • James B Eaglesham

Biotechnology and Biological Sciences Research Council (BB/000943N/1)

  • Nicolas Locker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Version history

  1. Received: March 8, 2019
  2. Accepted: August 9, 2019
  3. Accepted Manuscript published: August 12, 2019 (version 1)
  4. Version of Record published: September 11, 2019 (version 2)

Copyright

© 2019, Hosmillo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,299
    views
  • 557
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myra Hosmillo
  2. Jia Lu
  3. Michael R McAllaster
  4. James B Eaglesham
  5. Xinjie Wang
  6. Edward Emmott
  7. Patricia Domingues
  8. Yasmin Chaudhry
  9. Tim J Fitzmaurice
  10. Matthew KH Tung
  11. Marc Dominik Panas
  12. Gerald McInerney
  13. Nicolas Locker
  14. Craig B Wilen
  15. Ian G Goodfellow
(2019)
Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation
eLife 8:e46681.
https://doi.org/10.7554/eLife.46681

Share this article

https://doi.org/10.7554/eLife.46681

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ffion R Hammond, Amy Lewis ... Philip M Elks
    Research Article

    Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Chi Zhang, Rongjing Zhang, Junhua Yuan
    Research Article

    Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose–response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.