Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation

  1. Myra Hosmillo
  2. Jia Lu
  3. Michael R McAllaster
  4. James B Eaglesham
  5. Xinjie Wang
  6. Edward Emmott
  7. Patricia Domingues
  8. Yasmin Chaudhry
  9. Tim J Fitzmaurice
  10. Matthew KH Tung
  11. Marc Dominik Panas
  12. Gerald McInerney
  13. Nicolas Locker
  14. Craig B Wilen  Is a corresponding author
  15. Ian G Goodfellow  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Washington University School of Medicine, United States
  3. Karolinska Institutet, Sweden
  4. University of Surrey, United Kingdom
  5. Yale School of Medicine, United States

Abstract

Knowledge of the host factors required for norovirus replication has been hindered by the challenges associated with culturing human noroviruses. We have combined proteomic analysis of the viral translation and replication complexes with a CRISPR screen, to identify host factors required for norovirus infection. The core stress granule component G3BP1 was identified as a host factor essential for efficient human and murine norovirus infection, demonstrating a conserved function across the Norovirus genus. Furthermore, we show that G3BP1 functions in the novel paradigm of viral VPg-dependent translation initiation, contributing to the assembly of translation complexes on the VPg-linked viral positive sense RNA genome by facilitating ribosome recruitment. Our data uncovers a novel function for G3BP1 in the life cycle of positive sense RNA viruses and identifies the first host factor with pan-norovirus pro-viral activity.

Data availability

VPg proteomics raw data, search results and FASTA files can be found as part of PRIDE submission PXD007585. Flag-virus proteomics raw data, search results and FASTA files can be found as part of PRIDE submission PXD011779.

The following data sets were generated

Article and author information

Author details

  1. Myra Hosmillo

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3514-7681
  2. Jia Lu

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael R McAllaster

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James B Eaglesham

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinjie Wang

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Edward Emmott

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Patricia Domingues

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Yasmin Chaudhry

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Tim J Fitzmaurice

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1403-2495
  10. Matthew KH Tung

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Marc Dominik Panas

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7373-0341
  12. Gerald McInerney

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Nicolas Locker

    School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Craig B Wilen

    Department of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, United States
    For correspondence
    craig.wilen@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Ian G Goodfellow

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ig299@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9483-510X

Funding

Wellcome (207498/Z/17/Z)

  • Myra Hosmillo
  • Jia Lu
  • James B Eaglesham
  • Xinjie Wang
  • Edward Emmott
  • Patricia Domingues
  • Yasmin Chaudhry
  • Tim J Fitzmaurice
  • Matthew KH Tung
  • Ian G Goodfellow

National Institutes of Health (AI128043)

  • Craig B Wilen

Biotechnology and Biological Sciences Research Council (BB/N001176/1)

  • Jia Lu
  • Ian G Goodfellow

Wellcome (104914/Z/14/Z)

  • Ian G Goodfellow

Burroughs Wellcome Fund

  • Craig B Wilen

Churchill College, University of Cambridge

  • James B Eaglesham

Biotechnology and Biological Sciences Research Council (BB/000943N/1)

  • Nicolas Locker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Version history

  1. Received: March 8, 2019
  2. Accepted: August 9, 2019
  3. Accepted Manuscript published: August 12, 2019 (version 1)
  4. Version of Record published: September 11, 2019 (version 2)

Copyright

© 2019, Hosmillo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,130
    Page views
  • 538
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myra Hosmillo
  2. Jia Lu
  3. Michael R McAllaster
  4. James B Eaglesham
  5. Xinjie Wang
  6. Edward Emmott
  7. Patricia Domingues
  8. Yasmin Chaudhry
  9. Tim J Fitzmaurice
  10. Matthew KH Tung
  11. Marc Dominik Panas
  12. Gerald McInerney
  13. Nicolas Locker
  14. Craig B Wilen
  15. Ian G Goodfellow
(2019)
Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation
eLife 8:e46681.
https://doi.org/10.7554/eLife.46681

Share this article

https://doi.org/10.7554/eLife.46681

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Ray Chang, Ari Davydov ... Manu Prakash
    Research Article

    Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3–4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60–140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.

    1. Microbiology and Infectious Disease
    Hui Han, Rong-Hua Luo ... Cheng-Gang Zou
    Research Article

    Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively, at the transcriptional level in human lung epithelial cells (HPAEpiCs). SARS-CoV-2 infection increased the transcriptional activity of SP1 while inhibiting that of HNF4α. The PI3K/AKT signaling pathway, activated by SARS-CoV-2 infection, served as a crucial regulatory node, inducing ACE2 expression by enhancing SP1 phosphorylation—a marker of its activity—and reducing the nuclear localization of HNF4α. However, colchicine treatment inhibited the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. In Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2, inhibition of SP1 by either mithramycin A or colchicine resulted in reduced viral replication and tissue injury. In summary, our study uncovers a novel function of SP1 in the regulation of ACE2 expression and identifies SP1 as a potential target to reduce SARS-CoV-2 infection.