A geometric attractor mechanism for self-organization of entorhinal grid modules

  1. Louis Kang  Is a corresponding author
  2. Vijay Balasubramanian
  1. University of Pennsylvania, United States

Abstract

Grid cells in the medial entorhinal cortex (MEC) respond when an animal occupies a periodic lattice of 'grid fields' in the environment. The grids are organized in modules with spatial periods, or scales, clustered around discrete values separated on average by ratios in the range 1.4-1.7. We propose a mechanism that produces this modular structure through dynamical self-organization in the MEC. In attractor network models of grid formation, the grid scale of a single module is set by the distance of recurrent inhibition between neurons. We show that the MEC forms a hierarchy of discrete modules if a smooth increase in inhibition distance along its dorso-ventral axis is accompanied by excitatory interactions along this axis. Moreover, constant scale ratios between successive modules arise through geometric relationships between triangular grids and have values that fall within the observed range. We discuss how interactions required by our model might be tested experimentally.

Data availability

We have included the source code for our main simulation as a supporting file.

Article and author information

Author details

  1. Louis Kang

    David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States
    For correspondence
    louis.kang@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5702-2740
  2. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-3819

Funding

Honda Research Institute

  • Vijay Balasubramanian

National Science Foundation (PHY-1734030)

  • Vijay Balasubramanian

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley (Postdoctoral fellowship)

  • Louis Kang

National Institutes of Health (Medical Scientist Training Program)

  • Louis Kang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Upinder Singh Bhalla, Tata Institute of Fundamental Research, India

Version history

  1. Received: March 8, 2019
  2. Accepted: August 1, 2019
  3. Accepted Manuscript published: August 2, 2019 (version 1)
  4. Version of Record published: October 3, 2019 (version 2)

Copyright

© 2019, Kang & Balasubramanian

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,023
    Page views
  • 310
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louis Kang
  2. Vijay Balasubramanian
(2019)
A geometric attractor mechanism for self-organization of entorhinal grid modules
eLife 8:e46687.
https://doi.org/10.7554/eLife.46687

Share this article

https://doi.org/10.7554/eLife.46687

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Tony Zhang, Matthew Rosenberg ... Markus Meister
    Research Article

    An animal entering a new environment typically faces three challenges: explore the space for resources, memorize their locations, and navigate towards those targets as needed. Here we propose a neural algorithm that can solve all these problems and operates reliably in diverse and complex environments. At its core, the mechanism makes use of a behavioral module common to all motile animals, namely the ability to follow an odor to its source. We show how the brain can learn to generate internal “virtual odors” that guide the animal to any location of interest. This endotaxis algorithm can be implemented with a simple 3-layer neural circuit using only biologically realistic structures and learning rules. Several neural components of this scheme are found in brains from insects to humans. Nature may have evolved a general mechanism for search and navigation on the ancient backbone of chemotaxis.

    1. Neuroscience
    Frances Skinner
    Insight

    Automatic leveraging of information in a hippocampal neuron database to generate mathematical models should help foster interactions between experimental and computational neuroscientists.