A geometric attractor mechanism for self-organization of entorhinal grid modules

  1. Louis Kang  Is a corresponding author
  2. Vijay Balasubramanian
  1. University of Pennsylvania, United States

Abstract

Grid cells in the medial entorhinal cortex (MEC) respond when an animal occupies a periodic lattice of 'grid fields' in the environment. The grids are organized in modules with spatial periods, or scales, clustered around discrete values separated on average by ratios in the range 1.4-1.7. We propose a mechanism that produces this modular structure through dynamical self-organization in the MEC. In attractor network models of grid formation, the grid scale of a single module is set by the distance of recurrent inhibition between neurons. We show that the MEC forms a hierarchy of discrete modules if a smooth increase in inhibition distance along its dorso-ventral axis is accompanied by excitatory interactions along this axis. Moreover, constant scale ratios between successive modules arise through geometric relationships between triangular grids and have values that fall within the observed range. We discuss how interactions required by our model might be tested experimentally.

Data availability

We have included the source code for our main simulation as a supporting file.

Article and author information

Author details

  1. Louis Kang

    David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States
    For correspondence
    louis.kang@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5702-2740
  2. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-3819

Funding

Honda Research Institute

  • Vijay Balasubramanian

National Science Foundation (PHY-1734030)

  • Vijay Balasubramanian

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley (Postdoctoral fellowship)

  • Louis Kang

National Institutes of Health (Medical Scientist Training Program)

  • Louis Kang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Kang & Balasubramanian

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,220
    views
  • 337
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louis Kang
  2. Vijay Balasubramanian
(2019)
A geometric attractor mechanism for self-organization of entorhinal grid modules
eLife 8:e46687.
https://doi.org/10.7554/eLife.46687

Share this article

https://doi.org/10.7554/eLife.46687