Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior

  1. Thomas K Creson
  2. Camilo Rojas
  3. Ernie Hwaun
  4. Thomas Vaissiere
  5. Murat Kilinc
  6. Andres Jimenez-Gomez
  7. J Lloyd Holder
  8. Jianrong Tang
  9. Laura L Colgin
  10. Courtney A Miller
  11. Gavin Rumbaugh  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of Texas at Austin, United States
  3. Baylor College of Medicine, United States

Abstract

It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. SYNGAP1 haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for SYNGAP1 haploinsufficiency. Adult restoration of SynGAP protein improved behavioral and electrophysiological measures of memory and seizure. This included the elimination of interictal events that worsened during sleep. These events may be a biomarker for generalized cortical dysfunction in SYNGAP1 disorders because they also worsened during sleep in the human patient population. We conclude that SynGAP protein retains biological functions throughout adulthood and that non-developmental functions may contribute to disease phenotypes. Thus, treatments that target debilitating aspects of severe NDDs, such as medically-refractory seizures and cognitive impairment, may be effective in adult patients.

Data availability

Data used for generating figures are included in the manuscript and supporting files.

Article and author information

Author details

  1. Thomas K Creson

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  2. Camilo Rojas

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  3. Ernie Hwaun

    Institute for Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
  4. Thomas Vaissiere

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  5. Murat Kilinc

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  6. Andres Jimenez-Gomez

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. J Lloyd Holder

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Jianrong Tang

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Laura L Colgin

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    Laura L Colgin, Reviewing editor, eLife.
  10. Courtney A Miller

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  11. Gavin Rumbaugh

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    For correspondence
    grumbaug@scripps.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6360-3894

Funding

National Institute of Mental Health (MH108408)

  • Gavin Rumbaugh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted according to protocols submitted to, and approved by, Scripps Research (Protocol #15-037 and #15-038) and the Baylor College of Medicine (Protocol #AN5585) Institutional Animal Care and Use Committees.

Human subjects: The SYNGAP1 Patient Registry [42] (https://syngap1registry.iamrare.org) is funded through the National Organization of Rare Disorders. Collection of human subject data was reviewed and approved by Hummingbird (Study # 2016-57-SYNGAP) and Baylor College of Medicine (Study #H-30480 and #H-41411) Institutional Review Boards.The parents of patients S3-060 and S3-080, which are distinct patients from those represented in Supplemental Table 4, provided written informed consent according to a protocol approved by the Baylor College of Medicine Institutional Review Board.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: March 15, 2019
  2. Accepted: April 15, 2019
  3. Accepted Manuscript published: April 26, 2019 (version 1)
  4. Version of Record published: May 7, 2019 (version 2)

Copyright

© 2019, Creson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,702
    Page views
  • 615
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas K Creson
  2. Camilo Rojas
  3. Ernie Hwaun
  4. Thomas Vaissiere
  5. Murat Kilinc
  6. Andres Jimenez-Gomez
  7. J Lloyd Holder
  8. Jianrong Tang
  9. Laura L Colgin
  10. Courtney A Miller
  11. Gavin Rumbaugh
(2019)
Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior
eLife 8:e46752.
https://doi.org/10.7554/eLife.46752

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kenneth Kin Lam Wong, Tongchao Li ... Liqun Luo
    Research Article

    How does wiring specificity of neural maps emerge during development? Formation of the adult Drosophila olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon- and adaptive optical lattice light-sheet microscope-based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.

    1. Neuroscience
    Benjamin D Pedigo, Mike Powell ... Joshua T Vogelstein
    Research Article

    Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.