Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior

  1. Thomas K Creson
  2. Camilo Rojas
  3. Ernie Hwaun
  4. Thomas Vaissiere
  5. Murat Kilinc
  6. Andres Jimenez-Gomez
  7. J Lloyd Holder
  8. Jianrong Tang
  9. Laura L Colgin
  10. Courtney A Miller
  11. Gavin Rumbaugh  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of Texas at Austin, United States
  3. Baylor College of Medicine, United States

Abstract

It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. SYNGAP1 haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for SYNGAP1 haploinsufficiency. Adult restoration of SynGAP protein improved behavioral and electrophysiological measures of memory and seizure. This included the elimination of interictal events that worsened during sleep. These events may be a biomarker for generalized cortical dysfunction in SYNGAP1 disorders because they also worsened during sleep in the human patient population. We conclude that SynGAP protein retains biological functions throughout adulthood and that non-developmental functions may contribute to disease phenotypes. Thus, treatments that target debilitating aspects of severe NDDs, such as medically-refractory seizures and cognitive impairment, may be effective in adult patients.

Data availability

Data used for generating figures are included in the manuscript and supporting files.

Article and author information

Author details

  1. Thomas K Creson

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  2. Camilo Rojas

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  3. Ernie Hwaun

    Institute for Neuroscience, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
  4. Thomas Vaissiere

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  5. Murat Kilinc

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  6. Andres Jimenez-Gomez

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. J Lloyd Holder

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Jianrong Tang

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Laura L Colgin

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    Laura L Colgin, Reviewing editor, eLife.
  10. Courtney A Miller

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  11. Gavin Rumbaugh

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    For correspondence
    grumbaug@scripps.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6360-3894

Funding

National Institute of Mental Health (MH108408)

  • Gavin Rumbaugh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: Animal experiments were conducted according to protocols submitted to, and approved by, Scripps Research (Protocol #15-037 and #15-038) and the Baylor College of Medicine (Protocol #AN5585) Institutional Animal Care and Use Committees.

Human subjects: The SYNGAP1 Patient Registry [42] (https://syngap1registry.iamrare.org) is funded through the National Organization of Rare Disorders. Collection of human subject data was reviewed and approved by Hummingbird (Study # 2016-57-SYNGAP) and Baylor College of Medicine (Study #H-30480 and #H-41411) Institutional Review Boards.The parents of patients S3-060 and S3-080, which are distinct patients from those represented in Supplemental Table 4, provided written informed consent according to a protocol approved by the Baylor College of Medicine Institutional Review Board.

Version history

  1. Received: March 15, 2019
  2. Accepted: April 15, 2019
  3. Accepted Manuscript published: April 26, 2019 (version 1)
  4. Version of Record published: May 7, 2019 (version 2)

Copyright

© 2019, Creson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,416
    views
  • 681
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas K Creson
  2. Camilo Rojas
  3. Ernie Hwaun
  4. Thomas Vaissiere
  5. Murat Kilinc
  6. Andres Jimenez-Gomez
  7. J Lloyd Holder
  8. Jianrong Tang
  9. Laura L Colgin
  10. Courtney A Miller
  11. Gavin Rumbaugh
(2019)
Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior
eLife 8:e46752.
https://doi.org/10.7554/eLife.46752

Share this article

https://doi.org/10.7554/eLife.46752

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.