Post-decision processing in primate prefrontal cortex influences subsequent choices on an auditory decision-making task

  1. Joji Tsunada
  2. Yale Cohen  Is a corresponding author
  3. Joshua I Gold
  1. University of Pennsylvania, United States

Abstract

Perceptual decisions do not occur in isolation but instead reflect ongoing evaluation and adjustment processes that can affect future decisions. However, the neuronal substrates of these across-decision processes are not well understood, particularly for auditory decisions. We measured and manipulated the activity of choice-selective neurons in the ventrolateral prefrontal cortex (vlPFC) while monkeys made decisions about the frequency content of noisy auditory stimuli. As the decision was being formed, vlPFC activity was not modulated strongly by the task. However, after decision commitment, vlPFC population activity encoded the sensory evidence, choice, and outcome of the current trial and predicted subject-specific choice biases on the subsequent trial. Consistent with these patterns of neuronal activity, electrical microstimulation in vlPFC tended to affect the subsequent, but not current, decision. Thus, distributed post-commitment representations of graded decision-related information in prefrontal cortex can play a causal role in evaluating past decisions and biasing subsequent ones.

Data availability

The data analyses were performed in Matlab; this code is available https://github.com/CohenAuditoryLab/Joji.

Article and author information

Author details

  1. Joji Tsunada

    Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. Yale Cohen

    Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ycohen@pennmedicine.upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0830-5162
  3. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Joshua I Gold, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6018-0483

Funding

National Institute on Deafness and Other Communication Disorders (DC009224)

  • Yale Cohen

National Eye Institute (MH115557)

  • Joshua I Gold

National Institute on Deafness and Other Communication Disorders (DC012961)

  • Yale Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy D Griffiths, Newcastle University, United Kingdom

Ethics

Animal experimentation: The University of Pennsylvania Institutional Animal Care and Use Committee approved all of the experimental protocols, which were conducted under protocol 804699.

Version history

  1. Received: March 12, 2019
  2. Accepted: June 5, 2019
  3. Accepted Manuscript published: June 6, 2019 (version 1)
  4. Version of Record published: June 14, 2019 (version 2)

Copyright

© 2019, Tsunada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,816
    views
  • 452
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joji Tsunada
  2. Yale Cohen
  3. Joshua I Gold
(2019)
Post-decision processing in primate prefrontal cortex influences subsequent choices on an auditory decision-making task
eLife 8:e46770.
https://doi.org/10.7554/eLife.46770

Share this article

https://doi.org/10.7554/eLife.46770

Further reading

    1. Neuroscience
    Anja T Zai, Anna E Stepien ... Richard HR Hahnloser
    Research Article

    Songbirds’ vocal mastery is impressive, but to what extent is it a result of practice? Can they, based on experienced mismatch with a known target, plan the necessary changes to recover the target in a practice-free manner without intermittently singing? In adult zebra finches, we drive the pitch of a song syllable away from its stable (baseline) variant acquired from a tutor, then we withdraw reinforcement and subsequently deprive them of singing experience by muting or deafening. In this deprived state, birds do not recover their baseline song. However, they revert their songs toward the target by about 1 standard deviation of their recent practice, provided the sensory feedback during the latter signaled a pitch mismatch with the target. Thus, targeted vocal plasticity does not require immediate sensory experience, showing that zebra finches are capable of goal-directed vocal planning.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article Updated

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that – in addition to jumping, and rearing – is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing – all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveals a fear conditioned cue to orchestrate a temporally organized suite of behaviors.