Post-decision processing in primate prefrontal cortex influences subsequent choices on an auditory decision-making task

  1. Joji Tsunada
  2. Yale Cohen  Is a corresponding author
  3. Joshua I Gold
  1. University of Pennsylvania, United States

Abstract

Perceptual decisions do not occur in isolation but instead reflect ongoing evaluation and adjustment processes that can affect future decisions. However, the neuronal substrates of these across-decision processes are not well understood, particularly for auditory decisions. We measured and manipulated the activity of choice-selective neurons in the ventrolateral prefrontal cortex (vlPFC) while monkeys made decisions about the frequency content of noisy auditory stimuli. As the decision was being formed, vlPFC activity was not modulated strongly by the task. However, after decision commitment, vlPFC population activity encoded the sensory evidence, choice, and outcome of the current trial and predicted subject-specific choice biases on the subsequent trial. Consistent with these patterns of neuronal activity, electrical microstimulation in vlPFC tended to affect the subsequent, but not current, decision. Thus, distributed post-commitment representations of graded decision-related information in prefrontal cortex can play a causal role in evaluating past decisions and biasing subsequent ones.

Data availability

The data analyses were performed in Matlab; this code is available https://github.com/CohenAuditoryLab/Joji.

Article and author information

Author details

  1. Joji Tsunada

    Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. Yale Cohen

    Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ycohen@pennmedicine.upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0830-5162
  3. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Joshua I Gold, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6018-0483

Funding

National Institute on Deafness and Other Communication Disorders (DC009224)

  • Yale Cohen

National Eye Institute (MH115557)

  • Joshua I Gold

National Institute on Deafness and Other Communication Disorders (DC012961)

  • Yale Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The University of Pennsylvania Institutional Animal Care and Use Committee approved all of the experimental protocols, which were conducted under protocol 804699.

Copyright

© 2019, Tsunada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,939
    views
  • 466
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joji Tsunada
  2. Yale Cohen
  3. Joshua I Gold
(2019)
Post-decision processing in primate prefrontal cortex influences subsequent choices on an auditory decision-making task
eLife 8:e46770.
https://doi.org/10.7554/eLife.46770

Share this article

https://doi.org/10.7554/eLife.46770

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Nico A Flierman, Sue Ann Koay ... Chris I De Zeeuw
    Research Article

    The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.