1. Neuroscience
Download icon

Post-decision processing in primate prefrontal cortex influences subsequent choices on an auditory decision-making task

  1. Joji Tsunada
  2. Yale Cohen  Is a corresponding author
  3. Joshua I Gold
  1. University of Pennsylvania, United States
Research Article
  • Cited 11
  • Views 2,019
  • Annotations
Cite this article as: eLife 2019;8:e46770 doi: 10.7554/eLife.46770

Abstract

Perceptual decisions do not occur in isolation but instead reflect ongoing evaluation and adjustment processes that can affect future decisions. However, the neuronal substrates of these across-decision processes are not well understood, particularly for auditory decisions. We measured and manipulated the activity of choice-selective neurons in the ventrolateral prefrontal cortex (vlPFC) while monkeys made decisions about the frequency content of noisy auditory stimuli. As the decision was being formed, vlPFC activity was not modulated strongly by the task. However, after decision commitment, vlPFC population activity encoded the sensory evidence, choice, and outcome of the current trial and predicted subject-specific choice biases on the subsequent trial. Consistent with these patterns of neuronal activity, electrical microstimulation in vlPFC tended to affect the subsequent, but not current, decision. Thus, distributed post-commitment representations of graded decision-related information in prefrontal cortex can play a causal role in evaluating past decisions and biasing subsequent ones.

Article and author information

Author details

  1. Joji Tsunada

    Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. Yale Cohen

    Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ycohen@pennmedicine.upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0830-5162
  3. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Joshua I Gold, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6018-0483

Funding

National Institute on Deafness and Other Communication Disorders (DC009224)

  • Yale Cohen

National Eye Institute (MH115557)

  • Joshua I Gold

National Institute on Deafness and Other Communication Disorders (DC012961)

  • Yale Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The University of Pennsylvania Institutional Animal Care and Use Committee approved all of the experimental protocols, which were conducted under protocol 804699.

Reviewing Editor

  1. Timothy D Griffiths, Newcastle University, United Kingdom

Publication history

  1. Received: March 12, 2019
  2. Accepted: June 5, 2019
  3. Accepted Manuscript published: June 6, 2019 (version 1)
  4. Version of Record published: June 14, 2019 (version 2)

Copyright

© 2019, Tsunada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,019
    Page views
  • 338
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Cesar P Canales et al.
    Research Article

    In utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.5. MIA-driven transcriptional changes were validated via protein analysis, and parallel perturbations to cortical neuroanatomy were identified via imaging. MIA-induced acute upregulation of genes associated with hypoxia, immune signaling, and angiogenesis, by six hours following exposure. This acute response was followed by changes in proliferation, neuronal and glial specification, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cells in germinal zones and alterations in neuronal and glial populations were identified in the MIA-exposed cortex. Overall, paired transcriptomic and neuroanatomical characterization revealed a sequence of perturbations to corticogenesis driven by mid-gestational MIA.

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.