Inhibition of synucleinopathic seeding by rationally designed inhibitors

  1. Smriti Sangwan
  2. Shruti Sahay
  3. Kevin A Murray
  4. Sophie Morgan
  5. Elizabeth L Guenther
  6. Lin Jiang
  7. Christopher K Williams
  8. Harry V Vinters
  9. Michel Goedert
  10. David S Eisenberg  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Los Angeles, United States
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. University of California, Los Angeles, United States

Abstract

Seeding, in the context of amyloid disease, is the sequential transfer of pathogenic protein aggregates from cell-to-cell within affected tissues. The structure of pathogenic seeds provides the molecular basis and enables rapid conversion of soluble protein into fibrils. To date, there are no inhibitors that specifically target seeding of Parkinson’s disease (PD)-associated α-synuclein (α-syn) fibrils, in part, due to lack of information of the structural properties of pathological seeds. Here we design small peptidic inhibitors based on the atomic structure of the core of α-syn fibrils. The inhibitors prevent α-syn aggregation in vitro and in cell culture models with binding affinities of 0.5 μM to α-syn fibril seeds. The inhibitors also show efficacy in preventing seeding by human patient-derived α-syn fibrils. Our results suggest that pathogenic seeds of α-syn contain steric zippers and suggest a therapeutic approach targeted at the spread and progression that may be applicable for PD and related synucleinopathies.

Data availability

All data generated or analysed during this study are included in the manuscript. A source data file has been provided for Figures 2,3,4,5 and 7.

Article and author information

Author details

  1. Smriti Sangwan

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Shruti Sahay

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Kevin A Murray

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Sophie Morgan

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Elizabeth L Guenther

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Lin Jiang

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Christopher K Williams

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Harry V Vinters

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Michel Goedert

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    Michel Goedert, Reviewing editor, eLife.
  10. David S Eisenberg

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    david@mbi.ucla.edu
    Competing interests
    David S Eisenberg, SAB member and equity holder in ADRx, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2432-5419

Funding

National Institutes of Health (AG054022)

  • David S Eisenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, HHMI, University of California, Berkeley, United States

Publication history

  1. Received: March 12, 2019
  2. Accepted: November 13, 2019
  3. Accepted Manuscript published: January 2, 2020 (version 1)
  4. Version of Record published: January 23, 2020 (version 2)

Copyright

© 2020, Sangwan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,634
    Page views
  • 704
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Smriti Sangwan
  2. Shruti Sahay
  3. Kevin A Murray
  4. Sophie Morgan
  5. Elizabeth L Guenther
  6. Lin Jiang
  7. Christopher K Williams
  8. Harry V Vinters
  9. Michel Goedert
  10. David S Eisenberg
(2020)
Inhibition of synucleinopathic seeding by rationally designed inhibitors
eLife 9:e46775.
https://doi.org/10.7554/eLife.46775

Further reading

    1. Biochemistry and Chemical Biology
    Loïc Duffet, Elyse T Williams ... Tommaso Patriarchi
    Tools and Resources

    The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Minato Hirano, Gaddiel Galarza-Muñoz ... Mariano A Garcia-Blanco
    Research Article

    Genes associated with increased susceptibility to multiple sclerosis (MS) have been identified, but their functions are incompletely understood. One of these genes codes for the RNA helicase DExD/H-Box Polypeptide 39B (DDX39B), which shows genetic and functional epistasis with interleukin-7 receptor-α gene (IL7R) in MS-risk. Based on evolutionary and functional arguments, we postulated that DDX39B enhances immune tolerance thereby decreasing MS risk. Consistent with such a role we show that DDX39B controls the expression of many MS susceptibility genes and important immune-related genes. Among these we identified Forkhead Box P3 (FOXP3), which codes for the master transcriptional factor in CD4+/CD25+ T regulatory cells. DDX39B knockdown led to loss of immune-regulatory and gain of immune-effector expression signatures. Splicing of FOXP3 introns, which belong to a previously unrecognized type of introns with C-rich polypyrimidine tracts, was exquisitely sensitive to DDX39B levels. Given the importance of FOXP3 in autoimmunity, this work cements DDX39B as an important guardian of immune tolerance.