Novel long-range inhibitory nNOS-expressing hippocampal cells

  1. Zoé Christenson Wick  Is a corresponding author
  2. Madison R Tetzlaff
  3. Esther Krook-Magnuson  Is a corresponding author
  1. University of Minnesota, United States

Abstract

The hippocampus, a brain region important for spatial navigation and episodic memory, benefits from a rich diversity of neuronal cell-types. Through the use of an intersectional genetic viral vector approach in mice, we report novel hippocampal neurons which we refer to as LINCs, as they are long-range inhibitory neuronal nitric oxide synthase (nNOS)-expressing cells. LINCs project to several extrahippocampal regions including the tenia tecta, diagonal band, and retromammillary nucleus, but also broadly target local CA1 cells. LINCs are thus both interneurons and projection neurons. LINCs display regular spiking non-pyramidal firing patterns, are primarily located in the stratum oriens or pyramidale, have sparsely spiny dendrites, and do not typically express somatostatin, VIP, or the muscarinic acetylcholine receptor M2. We further demonstrate that LINCs can strongly influence hippocampal function and oscillations, including interregional coherence. Identification and characterization of these novel cells advances our basic understanding of both hippocampal circuitry and neuronal diversity.

Data availability

All data used for analysis in this publication are included in the manuscript and supporting files. Source data has been included for Table 1. Custom MatLab code is available through GitHub, Inc. at https://github.com/KM-Lab/SpectrumAndCoherence.

Article and author information

Author details

  1. Zoé Christenson Wick

    Graduate Program in Neuroscience, University of Minnesota, Minneapolis, United States
    For correspondence
    chri3433@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2752-0140
  2. Madison R Tetzlaff

    Neuroscience Department, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther Krook-Magnuson

    Neuroscience Department, University of Minnesota, Minneapolis, United States
    For correspondence
    ekrookma@umn.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-NS104071)

  • Esther Krook-Magnuson

National Institutes of Health (F31-NS105457)

  • Zoé Christenson Wick

University of Minnesota (MnDRIVE (Minnesota's Discovery Research and Innovation Economy) initiative)

  • Zoé Christenson Wick
  • Esther Krook-Magnuson

University of Minnesota (McKnight Land-Grant Professorship)

  • Esther Krook-Magnuson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Helen Scharfman, New York University Langone Medical Center, United States

Ethics

Animal experimentation: All experimental protocols were performed in strict accordance with and approved by the University of Minnesota's Institutional Animal Care and Use Committee (protocol # 1801-35497A).

Version history

  1. Received: March 13, 2019
  2. Accepted: October 11, 2019
  3. Accepted Manuscript published: October 14, 2019 (version 1)
  4. Version of Record published: November 8, 2019 (version 2)

Copyright

© 2019, Christenson Wick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,367
    views
  • 486
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zoé Christenson Wick
  2. Madison R Tetzlaff
  3. Esther Krook-Magnuson
(2019)
Novel long-range inhibitory nNOS-expressing hippocampal cells
eLife 8:e46816.
https://doi.org/10.7554/eLife.46816

Share this article

https://doi.org/10.7554/eLife.46816

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.