Novel long-range inhibitory nNOS-expressing hippocampal cells

  1. Zoé Christenson Wick  Is a corresponding author
  2. Madison R Tetzlaff
  3. Esther Krook-Magnuson  Is a corresponding author
  1. University of Minnesota, United States

Abstract

The hippocampus, a brain region important for spatial navigation and episodic memory, benefits from a rich diversity of neuronal cell-types. Through the use of an intersectional genetic viral vector approach in mice, we report novel hippocampal neurons which we refer to as LINCs, as they are long-range inhibitory neuronal nitric oxide synthase (nNOS)-expressing cells. LINCs project to several extrahippocampal regions including the tenia tecta, diagonal band, and retromammillary nucleus, but also broadly target local CA1 cells. LINCs are thus both interneurons and projection neurons. LINCs display regular spiking non-pyramidal firing patterns, are primarily located in the stratum oriens or pyramidale, have sparsely spiny dendrites, and do not typically express somatostatin, VIP, or the muscarinic acetylcholine receptor M2. We further demonstrate that LINCs can strongly influence hippocampal function and oscillations, including interregional coherence. Identification and characterization of these novel cells advances our basic understanding of both hippocampal circuitry and neuronal diversity.

Data availability

All data used for analysis in this publication are included in the manuscript and supporting files. Source data has been included for Table 1. Custom MatLab code is available through GitHub, Inc. at https://github.com/KM-Lab/SpectrumAndCoherence.

Article and author information

Author details

  1. Zoé Christenson Wick

    Graduate Program in Neuroscience, University of Minnesota, Minneapolis, United States
    For correspondence
    chri3433@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2752-0140
  2. Madison R Tetzlaff

    Neuroscience Department, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther Krook-Magnuson

    Neuroscience Department, University of Minnesota, Minneapolis, United States
    For correspondence
    ekrookma@umn.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-NS104071)

  • Esther Krook-Magnuson

National Institutes of Health (F31-NS105457)

  • Zoé Christenson Wick

University of Minnesota (MnDRIVE (Minnesota's Discovery Research and Innovation Economy) initiative)

  • Zoé Christenson Wick
  • Esther Krook-Magnuson

University of Minnesota (McKnight Land-Grant Professorship)

  • Esther Krook-Magnuson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were performed in strict accordance with and approved by the University of Minnesota's Institutional Animal Care and Use Committee (protocol # 1801-35497A).

Copyright

© 2019, Christenson Wick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,543
    views
  • 506
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zoé Christenson Wick
  2. Madison R Tetzlaff
  3. Esther Krook-Magnuson
(2019)
Novel long-range inhibitory nNOS-expressing hippocampal cells
eLife 8:e46816.
https://doi.org/10.7554/eLife.46816

Share this article

https://doi.org/10.7554/eLife.46816

Further reading

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.