Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B

  1. Timo Vögtle
  2. Sumana Sharma
  3. Jun Mori
  4. Zoltan Nagy
  5. Daniela Semeniak
  6. Cyril Scandola
  7. Mitchell J Geer
  8. Christopher W Smith
  9. Jordan Lane
  10. Scott Pollack
  11. Riitta Lassila
  12. Annukka Jouppila
  13. Alastair J Barr
  14. Derek J Ogg
  15. Tina D Howard
  16. Helen J McMiken
  17. Juli Warwicker
  18. Catherine Geh
  19. Rachel Rowlinson
  20. W Mark Abbott
  21. Anita Eckly
  22. Harald Schulze
  23. Gavin J Wright
  24. Alexandra Mazharian
  25. Klaus Fütterer
  26. Sundaresan Rajesh
  27. Michael R Douglas
  28. Yotis A Senis  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Wellcome Trust Sanger Institute, United Kingdom
  3. University Hospital Würzburg, Germany
  4. Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, France
  5. Sygnature Discovery Limited, United Kingdom
  6. University of Helsinki, Helsinki University Hospital, Finland
  7. Aplagon Oy, Finland
  8. Helsinki University Hospital Research Institute, Finland
  9. University of Westminster, United Kingdom
  10. Alderley Park, United Kingdom
  11. Dudley Group NHS Foundation Trust, United Kingdom
  12. Aston University, United Kingdom
18 figures, 4 tables and 1 additional file

Figures

Figure 1 with 3 supplements
Prominent binding of mG6b-B-Fc to the vessel wall.

Immunohistochemistry staining of frozen mouse tissue sections with mG6b-B-Fc or human IgG-Fc fragments (control). Bound protein was visualized using a secondary anti-human-Fc-HRP antibody and DAB …

https://doi.org/10.7554/eLife.46840.002
Figure 1—figure supplement 1
Overview sections of tissues stained with mG6b-B-Fc or negative control.

Overview sections of the tissues depicted in Figure 1. Boxed areas mark the sections shown in Figure 1.

https://doi.org/10.7554/eLife.46840.003
Figure 1—figure supplement 2
Overview sections of tissues stained with mG6b-B-Fc or negative control.

Overview sections of the tissues depicted in Figure 1. Boxed areas mark the sections shown in Figure 1.

https://doi.org/10.7554/eLife.46840.004
Figure 1—figure supplement 3
Pull-down of G6b-B binding partners from vena cava lysates.

Vena cava homogenates were incubated with G6b-B-Fc or Fc control protein as well as protein G sepharose beads to precipitate G6b-B binding partners. Following multiple washing steps, samples were …

https://doi.org/10.7554/eLife.46840.005
Figure 2 with 1 supplement
G6b-B-Fc binds to heparan sulfate side-chains of perlecan.

(A) 96-well plates were coated with the indicated substrates (5 µg/ml) and incubated with mouse G6b-B-Fc (10 µg/ml), human G6b-B-Fc (30 µg/ml) or Fc-control (10 µg/ml). Bound protein was detected …

https://doi.org/10.7554/eLife.46840.010
Figure 2—figure supplement 1
Loss of heparin sulfation impairs interaction with G6b-B.

96-well plates were coated with streptavidin followed by incubation of biotinylated heparin. Binding of the huG6b-B monomer–anti-G6b-B antibody complex (1 µg/ml each) was measured in the presence of …

https://doi.org/10.7554/eLife.46840.011
The heparan sulfate biosynthesis pathway is required for G6b-B binding to HEK293 cells.

(A) Recombinant G6b-B, produced as a monomeric biotinylated protein and conjugated to streptavidin-PE to generate an avid probe, binds to HEL, HEK293 and COLO-320-HSR cells. (B) A genome-wide …

https://doi.org/10.7554/eLife.46840.013
Figure 3—source data 1

Raw read counts from the screen carried out in HEK293 cells.

https://doi.org/10.7554/eLife.46840.014
Figure 3—source data 2

MAGeCK output for gene-wise ranking from the screen carried out in HEK293 cells.

https://doi.org/10.7554/eLife.46840.015
Figure 3—source data 3

Raw read counts from the screen carried out in HEL cells.

https://doi.org/10.7554/eLife.46840.016
Figure 3—source data 4

MAGeCK output for gene-wise ranking from the screen carried out in HEL cells.

https://doi.org/10.7554/eLife.46840.017
Figure 4 with 3 supplements
Ribbon representation of the ternary complex of the extracellular domain (ECD) of human G6b-B bound to heparin and the Fab fragment of a G6b-B-specific antibody.

(A) Overview of the structure, with G6b-B colored in magenta and dark green, heparin shown as spheres, and the Fab fragment chains in light green/light blue, respectively. The assembly represents …

https://doi.org/10.7554/eLife.46840.018
Figure 4—figure supplement 1
Mutations in G6b-B abolish heparin binding.

(A) G6b-B model. (i) Ribbon representation showing predicted locations of basic residues K54, K58, R60 and R61 in green. (ii) Superposition of the G6b-B model (dark blue) with Siglec-7 (cyan) in …

https://doi.org/10.7554/eLife.46840.019
Figure 4—figure supplement 2
Representation of the crystal lattice.

(A) Crystal lattice of the ternary complex of G6b-B bound to heparin and the G6b-B-specific Fab fragment. The top and bottom halves of the view are related by a 90° rotation about the horizontal …

https://doi.org/10.7554/eLife.46840.020
Figure 4—figure supplement 3
Unbiased σA-weighted difference density map demonstrating the presence of the O-linked glycosyl groups at Thr73.
https://doi.org/10.7554/eLife.46840.021
Heparin induces G6b-B dimer formation.

Size exclusion chromatography of G6b-B ECD. Protein was either analyzed immediately or incubated at 4°C for 1.5 hr in the presence of dp12 before analysis on a Superdex 75 10/300 GL column. …

https://doi.org/10.7554/eLife.46840.023
Figure 6 with 1 supplement
Electrostatic surface potential of the G6b-B ECD and representation of non-covalent contacts between heparin and G6b.

(A) The G6b-B dimer is shown with a translucent surface colored according to electrostatic surface potential (calculated using CCP4mg). The heparin ligand is shown as a stick model and polar …

https://doi.org/10.7554/eLife.46840.024
Figure 6—figure supplement 1
Unbiased σA-weighted difference density map demonstrating the presence of the heparin ligand.

The electron map has been calculated with phases from a structure model lacking the heparin atoms and with amplitudes (Fo – Fc), contouring the map at 2.8 σ above the mean.

https://doi.org/10.7554/eLife.46840.025
High-affinity interaction between G6b-B and its ligands.

Representative traces of the surface plasmon resonance experiments, results of which are presented in Table 3. (A) Binding of the indicated compound to immobilized dimeric G6b-B in the standard …

https://doi.org/10.7554/eLife.46840.026
Figure 8 with 1 supplement
Heparan sulfate removal of perlecan facilitates platelet adhesion.

The indicated substrates were coated alone or in combination onto wells in 96-well plates (2.5 µg/ml collagen and 10 µg/ml for all other substrates) overnight. Where indicated, wells were treated …

https://doi.org/10.7554/eLife.46840.028
Figure 8—figure supplement 1
Mean surface area of individual adherent platelets.

Mean surface area of the individual platelets analyzed in Figure 8C,D. Each dot represents an individual platelet from a total of (A) five human donors or (B) 5–7 mice/condition/genotype from 2 to 3 …

https://doi.org/10.7554/eLife.46840.029
Figure 9 with 2 supplements
Megakaryocytes come into contact with perlecan in the bone marrow.

(A) Analysis of immunofluorescent images of murine femur sections from WT and Mpig6b–/mice. Sinusoids were marked using anti-endoglin (CD105) and MKs by anti-GPIX antibodies. Perlecan is abundantly …

https://doi.org/10.7554/eLife.46840.030
Figure 9—figure supplement 1
Overview sections of the bone marrow from WT and Mpig6b–/mice.

Overview sections of the bone marrow in femora of WT and Mpig6b–/depicted in Figure 9A are shown.

https://doi.org/10.7554/eLife.46840.031
Figure 9—figure supplement 2
Mpig6b–/megakaryocytes form clusters.

Megakaryocytes are indicated with a transparent orange overlay and endothelial cells with a transparent blue overlay. *indicates the sinusoidal lumen; MK, megakaryocyte. Bars: 10 µm.

https://doi.org/10.7554/eLife.46840.032
G6b knockout megakaryocytes show enhanced spreading on perlecan.

Adhesion of WT and Mpig6b–/MKs on perlecan. (i) Mean surface area of MKs was quantified with ImageJ. n = 4–6 mice/condition/genotype from three independent experiments; total cell numbers analyzed …

https://doi.org/10.7554/eLife.46840.033
Effects of G6b-B ligands on platelet aggregation.

Human platelet rich plasma (PRP) was incubated with the indicated compound for 90 s prior to agonist addition. Aggregation traces were recorded on a Chronolog four channel aggregometer. Averaged …

https://doi.org/10.7554/eLife.46840.034
APAC inhibits CLEC-2-mediated degranulation in WT but not Mpig6b KO platelets.

Mouse blood, diluted 1:10 in Tyrode’s buffer was incubated with the indicated compounds (0.05 µM) in the (A) absence or (B) presence of a stimulating CLEC-2 (3 µg/ml) for the indicated time. Samples …

https://doi.org/10.7554/eLife.46840.035
Figure 13 with 1 supplement
APAC induces G6b-B phosphorylation and downstream signaling.

(A) Washed human platelets (5 × 108/ml) were incubated for 90 s with 0.05 µM APAC, 0.7 µM heparin or buffer in the presence of 10 µM integrilin. Where indicated, platelets were additionally …

https://doi.org/10.7554/eLife.46840.037
Figure 13—figure supplement 1
Effects of G6b-B ligands on G6b-B phosphorylation.

(A,B) Washed human platelets (5 × 108/ml) were incubated for 90 s with the indicated compounds in the presence of 10 µM integrillin. Whole cell lysates (WCL) subjected to immunoprecipitation (IP) …

https://doi.org/10.7554/eLife.46840.038
Figure 14 with 1 supplement
Simplified model of glycan-mediated regulation of G6b-B function.

(A) In the absence of any ligand, G6b-B is mainly present in a monomeric state and phosphorylated to a low degree. (B) Small soluble ligands, for example heparin, induce the dimerization of the …

https://doi.org/10.7554/eLife.46840.039
Figure 14—figure supplement 1
Selected structures of proteins with a heparin ligand.

Side-by-side views of Cα traces (ribbon representation) and electrostatic surfaces of proteins bound to heparin or a heparin analog. The subset includes structures in which the heparin ligand …

https://doi.org/10.7554/eLife.46840.040
Author response image 1
Relative numbers of MKs located at the vessel.
https://doi.org/10.7554/eLife.46840.043
Author response image 2
A pentameric version of the G6b-B protein is used.

CBFH refers to the COMP-β-lactamase-FLAG-3XHis tag. Binding assay was performed nine days post transduction with a sgRNA targeting EXTL3 as described before (Sharma et al., Genome Res., 2018). Two …

https://doi.org/10.7554/eLife.46840.044
Author response image 3
Comparison of genome-wide screens performed for G6b-B (top panel) vs a CS-binding protein (bottom panel).

G6B-BLH screened on HEL cells. Note the presence of HS-specific genes (EXTL3, EXT1, EXT2) only for G6B and CHST11 only for the CS-binding protein.

https://doi.org/10.7554/eLife.46840.045
Author response image 4
Binding behaviour of a CS binding protein.

Targeting EXTL3 has no effect on binding whereas targeting SLC35B2 clearly abrogates binding.

https://doi.org/10.7554/eLife.46840.046

Tables

Table 1
List of proteins immunoprecipitated with mG6b-B-Fc from vena cava lysates
https://doi.org/10.7554/eLife.46840.006
Accession numberNamePeptidesProtein scoreProtein score negative controlFE
E9PZ16Basement membrane-specific heparan sulfate proteoglycan core protein (perlecan)131607.22n.d.
E9QPE7Myosin-11103468.02719.710.7
F8VQJ3Laminin subunit gamma-175434.439.6645.0
Q5SX39Myosin-480328.62587.140.6
Q8VDD5Myosin-981318.18513.680.6
P97927Laminin subunit alpha-456285.20n.d.
Q61292Laminin subunit beta-263262.37n.d.
B2RWX0Myosin, heavy polypeptide 1,
skeletal muscle, adult
61244.66446.140.5
P02469Laminin subunit beta-157236.87n.d.
J3QQ16Protein Col6a361232.9914.7615.8
G3UW82MCG140437, isoform CRA_d54214.75378.870.6
B7FAU9Filamin, alpha58202.67139.511.5
Q3UHL6Putative uncharacterized protein — fibronectin48192.76n.d.
Q9JKF1Ras GTPase-activating-like protein IQGAP131107.7968.571.6
M0QWP1Agrin2184.47n.d.
P19096Fatty acid synthase2774.6823.813.1
Q61001Laminin subunit alpha-52373.24n.d.
E9QPX1Collagen alpha-1(XVIII) chain1659.16n.d.
A2AJY2Collagen alpha-1(XV) chain1453.53n.d.
B7ZNH7Collagen alpha-1(XIV) chain1543.273.0914.0
P26039Talin-11142.2929.931.4
  1. Fold enrichment (FE)=score G6b-B-FC precipitation/score negative control; n.d. = not detectable. Proteins that are prominently present in the negative control (FE < 2) are shown in italic. The protein score was calculated using the SEQUEST HT search algorithm and is the sum of all peptide Xcorr values above the specified score threshold (0.8 + peptide_charge × peptide_relevance_factor where peptide_relevance_factor is a parameter with a default value of 0.4). The full data set, including the mass spectrometry result for the respective band of a G6b-B-FC only sample, is found in Table 1—source data 13. A picture of a gel and the bands excised for mass-spectrometric analysis are shown in Figure 1—figure supplement 3.

Table 1—source data 1

Mass spectrometry results for proteins precipitated from vena cava lysates with mG6b-B-Fc.

https://doi.org/10.7554/eLife.46840.007
Table 1—source data 2

Mass spectrometry results for proteins precipitated from vena cava lysates with Fc control protein.

https://doi.org/10.7554/eLife.46840.008
Table 1—source data 3

Mass spectrometry results for the proteins detected at the respective height after loading mG6b-B-Fc only (no vena cava lysate).

https://doi.org/10.7554/eLife.46840.009
Table 2
Crystallographic data collection and refinement statistics for the G6b-B ECD–dp12–Fab complex.
https://doi.org/10.7554/eLife.46840.022
X-ray diffraction data
BeamlineI03, Diamond Light Source
Wavelength (Å)0.97624
Space groupC2
Cell parameters (Å)183.8, 72.34, 131.0, β = 124.5°
Complexes per asymmetric unit1
Resolution range (Å)65.27–3.13
High resolution shell (Å)3.18–3.13
Rmerge (%)*17.0 (146.6)
Total observations, unique reflections74,255/24,543
I/σ(I)*4.0 (0.7)
Completeness (%)*97.2 (98.2)
Multiplicity*3.0 (3.1)
CC1/2*, †0.991 (0.348)
Refinement
Resolution range63.1–3.13
Unique reflections24,543
Rcryst, Rfree (%)22.6, 26.0
Number of non-H atoms7852
RMSD bonds (Å)0.01
RMSD angles (°)1.18
B-factors
Wilson (Å2)77.5
Average overall (Å2)84.7
RMSD B-factors (Å2)5.737
Ramachandran statistics
Favored regions (%)91.2
Allowed regions (%)8.3
Disallowed (%)0.5
  1. * parentheses refer to the high resolution shell.

    as defined in Karplus and Diederichs (2012).

  2. calculated using molprobity (Williams et al., 2018).

Table 3
Surface plasmon resonance affinities.
https://doi.org/10.7554/eLife.46840.027
Immobilized G6b-B receptor (standard configuration)
LigandG6b-BKonKoffKD (M)
HeparinMonomer1.12 ± 0.39×1062.01 ± 0.54×10−32.00 ± 1.17×10−9
Dimer0.60 ± 0.56×1063.16 ± 1.17×10−37.76 ± 5.30×10−9
Fractionated HSMonomer1.33 ± 0.01×1059.99 ± 0.16×10−47.47 ± 0.17×10−9
Dimer1.20 ± 0.08×1051.71 ± 1.11×10−314.0 ± 8.26×10−9
PerlecanMonomer1.94 ± 1.72×1021.01 ± 0.37×10−47.32 ± 4.64×10−7
Dimer5.79 ± 6.94×1032.28 ± 2.51×10−34.74 ± 1.34×10−7
dp12Monomer0.31 ± 0.27×1062.39 ± 1.79×10−38.12 ± 1.22×10−9
Dimer2.50 ± 2.72×1064.60 ± 5.01×10−31.84 ± 0.01×10−9
Immobilized ligand (reversed configuration)
LigandG6b-BKonKoffKD (M)
HeparinMonomer1.30 ± 0.29×1058.85 ± 0.40×10−26.99 ± 1.25×10−7
Dimer3.28 ± 0.53×1051.73 ± 0.04×10−35.33 ± 0.75×10−9
Fractionated HSMonomer9.22 ± 2.67×1036.40 ± 0.33×10−37.31 ± 2.47×10−7
Dimer3.76 ± 4.69×1044.58 ± 6.32×10−47.70 ± 7.21×10-9
PerlecanMonomer6.73 ± 3.38×1031.28 ± 0.24×10−32.28 ± 1.51×10−7
Dimer4.90 ± 2.16×1046.78 ± 2.57×10−41.41 ± 0.09×10−8
  1. Values are means ± SD from two independent experiments.

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Genetic reagent (Mus musculus)Mpig6b–/–PMID: 23112346Dr. Yotis Senis (University of Birmingham and EFS Grand Est, Inserm UMR-S1255)
Genetic reagent (M. musculus)Mpig6bdiYF/diYFPMID: 29891536Dr. Yotis Senis (University of Birmingham and EFS Grand Est, Inserm UMR-S1255)
Cell line (Cricetulus griseus)A5 CHOotherprovided by Dr. Ana Kasirer-Friede and Dr. Sanford Shattil (University of California, San Diego)
Antibodyanti-perlecan (rat monoclonal)Santa Cruz Biotechnologiesclone A7L6; sc-33707; RRID:AB_627714(1:100); used for IF staining of bone marrow (BM)
Antibodyanti-mouse CD105 (Endoglin) (rat monoclonal)eBioscience/Thermo Fisher Scientific#MA5-17943; clone MJ7/18; RRID:AB_2539327(1:100); used for IF staining of BM
Antibodyanti-GPIX-Alexa488 (rat monoclonal)otherclone 56F81.4 µg/ml; used for IF staining of BM, custom made lab reagent
Antibodyanti rat IgG Alexa 647 (goat polyclonal)Invitrogen#A-21247; RRID:AB_141778(1:300); used for IF staining of BM
Antibodyanti rat IgG Alexa 546 (goat polyclonal)Invitrogen#A-11081; RRID:AB_141738(1:300); used for
IF staining of BM
Antibodyanti-actin (mouse monoclonal)Sigma-Aldrich#A4700, clone AC-40; RRID:AB_476730(1:1000)
AntibodyAnti-α-tubulin (mouse monoclonal)Sigma-Aldrich#T6199, clone DM1A; RRID:AB_477583(1:1000)
Antibodyanti-GAPDH (rabbit monoclonal)Cell Signaling Technology#2118, clone: 14C10; RRID:AB_561053(1:10) dilution, on 0.05 mg/ml lysates for Wes
Antibodyanti-Src p-Tyr418 (rabbit polyclonal)Sigma-Aldrich#44660G;
RRID:AB_1500523
(1:10) dilution, on 0.05 mg/ml lysates for Wes
Antibodyanti-Shp1 p-Tyr564 (rabbit monoclonal)Cell Signaling Technology#8849, clone: D11G5;
RRID:AB_11141050
(1:10) dilution, on 0.2 mg/ml lysates for Wes
Antibodyanti-Shp2 p-Tyr542 (rabbit polyclonal)Cell Signaling Technology#3751;
RRID:AB_330825
(1:10) dilution, on 0.2 mg/ml lysates for Wes
Antibodyanti-Shp2 p-Tyr580 (rabbit polyclonal)Cell Signaling Technology#3703; RRID:AB_2174962(1:10) dilution,
on 0.2 mg/ml lysates for Wes
Antibodyanti-Syk p-Tyr525/6 (rabbit polyclonal)Cell Signaling Technology#2711;
RRID:AB_2197215
(1:50) dilution, on 0.2 mg/ml lysates for Wes
Antibodyanti-SH-PTP1/Shp-1 (rabbit polyclonal)Santa Cruzsc-287 (C19); RRID:AB_2173829(1:1000)
Antibodyanti-SH-PTP2/Shp-2 (rabbit polyclonal)Santa Cruzsc-280 (C18); RRID:AB_632401(1:1000)
Antibodyanti-phosphotyrosine (mouse monoclonal)Merck-Millipore05–321, clone 4G10;
RRID:AB_309678
(1:1000)
Antibodyanti-human G6b-B (mouse monoclonal)otherclone 17–410 µg/ml, custom-made lab reagent
Peptide, recombinant proteinpurified human IgG-Fc fragmentBethyl LaboratoriesP80-104
Peptide, recombinant proteinrecombinant Mouse Syndecan-2/CD362 protein, CFR&D Systems6585-SD-050
Peptide, recombinant proteinrecombinanthuman Agrin protein, N-terminal, CFR&D Systems8909-AG-050
Peptide, recombinant proteinrec. human laminin 111BiolaminaLN111-02
Peptide, recombinant proteinrec. human laminin 411BiolaminaLN411-02
Peptide, recombinant proteinrec. human laminin 421BiolaminaLN421-02
Peptide, recombinant proteinrec. human laminin 511BiolaminaLN511-02
Peptide, recombinant proteinrec. human laminin 521BiolaminaLN521-02
Chemical compound, drugheparan sulfate proteoglycanSigma-AldrichH4777alternative name: perlecan
Chemical compound, drugheparinIduronHEP001https://iduron.co.uk/product/Heparin-1
Chemical compound, drugheparin oligosaccharide dp4IduronHO04https://iduron.co.uk/product/Heparin-1
Chemical compound, drugheparin oligosaccharide dp8IduronHO08https://iduron.co.uk/product/Heparin-1
Chemical compound, drugheparin oligosaccharide dp12IduronHO12https://iduron.co.uk/product/Heparin-1
Chemical compound, drugheparin oligosaccharide dp20IduronHO20https://iduron.co.uk/product/Heparin-1
Chemical compound, drug2-O-desulphated heparinIduronDSH001/2
Chemical compound, drug6-O-desulphated heparinIduronDSH002/6
Chemical compound, drugN desulphated heparinIduronDSH003/N
Chemical compound, drugN-desulphated re N-acetylated heparinIduronDSH004/Nac
Chemical compound, drugheparan sulphateIduronGAG-HS01
Chemical compound, drugHS fraction III approx. mol. wt. 9 kDaIduronGAG-HS III
Chemical compound, drugAPACAplagon Oy
Chemical compound, drugheparinase III (heparitinase I) Flavobacterium heparinum (EC 4.2.2.8)AMSBiotechnologyAMS.HEP-ENZ III
Chemical compound, drugHeparin−biotin sodium saltSigma-AldrichB9806-10MG
Chemical compound, drugfibronectinCabiochemCat #341631
Chemical compound, drugfibrinogenEnzyme Research LaboratoriesFib 3 3496L
Chemical compound, drugcollagen ITakeda1130630collagen reagens horms
Chemical compound, drugCultrex Mouse Collagen IVTrevigen3410-010-01purchased via R & D Systems
Chemical compound, drugLaminin from EHS murine sarcoma basement membraneSigma-AldrichL2020refers to mouse laminin-111 in this study
Chemical compound, drugstreptavidinSigma-AldrichS4762
SoftwareCell Profiler (2.2.0)Broad Institutehttp://cellprofiler.org/ RRID:SCR_007358
SoftwareFijiPMID: 22743772https://imagej.net/Fiji;
RRID:SCR_002285

Additional files

Download links