Cerebellar climbing fibers encode expected reward size
Abstract
Climbing fiber inputs to the cerebellum encode error signals that instruct learning. Recently, evidence has accumulated to suggest that the cerebellum is also involved in the processing of reward. To study how rewarding events are encoded, we recorded the activity of climbing fibers when monkeys were engaged in an eye movement task. At the beginning of each trial, the monkeys were cued to the size of the reward that would be delivered upon successful completion of the trial. Climbing fiber activity increased when the monkeys were presented with a cue indicating a large reward size. Reward size did not modulate activity at reward delivery or during eye movements. Comparison between climbing fiber and simple spike activity indicated different interactions for coding of movement and reward. These results indicate that climbing fibers encode the expected reward size and suggest a general role of the cerebellum in associative learning beyond error correction.
Data availability
The data used in this paper is available in:https://github.com/MatiJlab
Article and author information
Author details
Funding
H2020 European Research Council (imove 755745)
- Mati Joshua
Human Frontier Science Program (CDA 00056)
- Mati Joshua
Israel Science Foundation (38017)
- Noga Larry
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All the procedures described in this paper were approved in advance by the Institutional Animal Care and Use Committees of the Hebrew University of Jerusalem (ethics approval number MD15145854) and were in strict compliance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.
Copyright
© 2019, Larry et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,789
- views
-
- 501
- downloads
-
- 85
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.
-
- Genetics and Genomics
- Neuroscience
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.