Functional brain alterations following mild-to-moderate sensorineural hearing loss in children

  1. Axelle Calcus  Is a corresponding author
  2. Outi Tuomainen
  3. Ana Campos
  4. Stuart Rosen
  5. Lorna F Halliday
  1. Ecole Normale Supérieure, France
  2. University College London, United Kingdom

Abstract

Auditory deprivation in the form of deafness during development leads to lasting changes in central auditory system function. However, less is known about the effects of mild-to-moderate sensorineural hearing loss (MMHL) during development. Here, we used a longitudinal design to examine late auditory evoked responses and mismatch responses to nonspeech and speech sounds for children with MMHL. At Time 1, younger children with MMHL (8-12 years; n = 23) showed age-appropriate mismatch negativities (MMNs) to sounds, but older children (12-16 years; n = 23) did not. Six years later, we re-tested a subset of the younger (now older) children with MMHL (n = 13). Children who had shown significant MMNs at Time 1 showed MMNs that were reduced and, for nonspeech, absent at Time 2. Our findings demonstrate that even a mild-to-moderate hearing loss during early-to-mid childhood can lead to changes in the neural processing of sounds in late childhood/adolescence.

Data availability

Unidentifiable data, stimuli, and statistical analyses scripts are available on https://github.com/acalcus/MMHL.git

The following data sets were generated

Article and author information

Author details

  1. Axelle Calcus

    Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
    For correspondence
    axelle.calcus@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1240-1122
  2. Outi Tuomainen

    Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Campos

    Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Stuart Rosen

    Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lorna F Halliday

    Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 Marie Skłodowska-Curie Actions (FP7-607139)

  • Axelle Calcus

ESRC National Centre for Research Methods, University of Southampton (RES-061-25-0440)

  • Lorna F Halliday

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan Erik Peelle, Washington University in St. Louis, United States

Ethics

Human subjects: Informed consent, and consent to publish was obtained from parents/guardians of the children included in this study. Ethical approval for this study was provided by the UCL Research Ethics Committee (Project ID number: 2109/004).

Version history

  1. Received: March 18, 2019
  2. Accepted: September 7, 2019
  3. Accepted Manuscript published: October 1, 2019 (version 1)
  4. Version of Record published: November 4, 2019 (version 2)

Copyright

© 2019, Calcus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,788
    views
  • 425
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Axelle Calcus
  2. Outi Tuomainen
  3. Ana Campos
  4. Stuart Rosen
  5. Lorna F Halliday
(2019)
Functional brain alterations following mild-to-moderate sensorineural hearing loss in children
eLife 8:e46965.
https://doi.org/10.7554/eLife.46965

Share this article

https://doi.org/10.7554/eLife.46965

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.