HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis

  1. Shuping Zhang
  2. Alejandra Macias-Garcia
  3. Jacob C Ulirsch
  4. Jason Velazquez
  5. Vincent L Butty
  6. Stuart S Levine
  7. Vijay G Sankaran
  8. Jane-Jane Chen  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Boston Children's Hospital, Harvard Medical School, United States

Abstract

Iron and heme play central roles in red blood cell production. However, the underlying mechanisms remain incompletely understood. HRI is a heme-regulated kinase that controls translation by phosphorylating eIF2a. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integrated stress response mRNAs during iron deficiency in vivo. Moreover, we find that translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins are substantially repressed by HRI in iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI in iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis.

Data availability

All sequencing data have been deposited in GEO under accession code GSE119365.

The following data sets were generated

Article and author information

Author details

  1. Shuping Zhang

    Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alejandra Macias-Garcia

    Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob C Ulirsch

    Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason Velazquez

    Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent L Butty

    BioMicro Center, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stuart S Levine

    BioMicro Center, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vijay G Sankaran

    Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0044-443X
  8. Jane-Jane Chen

    Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    j-jchen@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4372-6907

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (RO1 DK087984)

  • Jane-Jane Chen

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK103794)

  • Vijay G Sankaran

National Heart, Lung, and Blood Institute (R33 HL120791)

  • Vijay G Sankaran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were maintained at the Massachusetts Institute of Technology (MIT) animal facility, and all experiments were carried out using protocols (#1015-099-18) approved by the Division of Comparative Medicine, MIT.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuping Zhang
  2. Alejandra Macias-Garcia
  3. Jacob C Ulirsch
  4. Jason Velazquez
  5. Vincent L Butty
  6. Stuart S Levine
  7. Vijay G Sankaran
  8. Jane-Jane Chen
(2019)
HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis
eLife 8:e46976.
https://doi.org/10.7554/eLife.46976

Share this article

https://doi.org/10.7554/eLife.46976

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.