Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans

  1. Hame Park  Is a corresponding author
  2. Christoph Kayser  Is a corresponding author
  1. Bielefeld University, Germany

Abstract

Perception adapts to mismatching multisensory information, both when different cues appear simultaneously and when they appear sequentially. While both multisensory integration and adaptive trial-by-trial recalibration are central for behavior, it remains unknown whether they are mechanistically linked and arise from a common neural substrate. To relate the neural underpinnings of sensory integration and recalibration, we measured whole-brain magnetoencephalography while human participants performed an audio-visual ventriloquist task. Using single-trial multivariate analysis, we localized the perceptually-relevant encoding of multisensory information within and between trials. While we found neural signatures of multisensory integration within temporal and parietal regions, only medial superior parietal activity encoded past and current sensory information and mediated the perceptual recalibration within and between trials. These results highlight a common neural substrate of sensory integration and perceptual recalibration, and reveal a role of medial parietal regions in linking present and previous multisensory evidence to guide adaptive behavior.

Data availability

The behavioral data presented in Figure 1 and LDA performance data and source regression data used to calculate the t-values in Figures 2-5, as well as data for Figure 4-figure supplement 1 have been deposited on Dryad (https://dx.doi.org/10.5061/dryad.t0p9c93).

The following data sets were generated

Article and author information

Author details

  1. Hame Park

    Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany
    For correspondence
    hame.park@uni-bielefeld.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2191-2055
  2. Christoph Kayser

    Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany
    For correspondence
    christoph.kayser@uni-bielefeld.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7362-5704

Funding

H2020 European Research Council (ERC-2014-CoG No 646657)

  • Christoph Kayser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ross K Maddox, University of Rochester, United States

Ethics

Human subjects: All participants submitted written informed consent. The study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethics committee. Ethics Application No: 300140078 (College of Science and Engineering, University of Glasgow).

Version history

  1. Received: March 19, 2019
  2. Accepted: June 26, 2019
  3. Accepted Manuscript published: June 27, 2019 (version 1)
  4. Version of Record published: July 26, 2019 (version 2)

Copyright

© 2019, Park & Kayser

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,250
    views
  • 388
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hame Park
  2. Christoph Kayser
(2019)
Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans
eLife 8:e47001.
https://doi.org/10.7554/eLife.47001

Share this article

https://doi.org/10.7554/eLife.47001

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.