1. Neuroscience
Download icon

Inferring synaptic inputs from spikes with a conductance-based neural encoding model

  1. Kenneth W Latimer  Is a corresponding author
  2. Fred Rieke
  3. Jonathan W Pillow  Is a corresponding author
  1. University of Washington, United States
  2. Princeton University, United States
Research Article
  • Cited 3
  • Views 1,301
  • Annotations
Cite this article as: eLife 2019;8:e47012 doi: 10.7554/eLife.47012

Abstract

Descriptive statistical models of neural responses generally aim to characterize the mapping from stimuli to spike responses while ignoring biophysical details of the encoding process. Here, we introduce an alternative approach, the conductance-based encoding model (CBEM), which describes amapping fromstimuli to excitatory and inhibitory synaptic conductances governing the dynamics of sub-threshold membrane potential. Remarkably, we show that the CBEM can be fit to extracellular spike train data and then used to predict excitatory and inhibitory synaptic currents. We validate these predictions with intracellular recordings from macaque retinal ganglion cells. Moreover, we offer a novel quasi-biophysical interpretation of the Poisson generalized linear model (GLM) as a special case of the CBEM in which excitation and inhibition are perfectly balanced. This work forges a new link between statistical and biophysical models of neural encoding and sheds new light on the biophysical variables that underlie spiking in the early visual pathway.

Article and author information

Author details

  1. Kenneth W Latimer

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    latimerk@uchicago.edu
    Competing interests
    No competing interests declared.
  2. Fred Rieke

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    Fred Rieke, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1052-2609
  3. Jonathan W Pillow

    Princeton Neuroscience Institute, Department of Psychology, Princeton University, Princeton, United States
    For correspondence
    pillow@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3638-8831

Funding

McKnight Foundation

  • Jonathan W Pillow

Simons Foundation (SCGB AWD1004351)

  • Jonathan W Pillow

National Science Foundation (IIS-1150186)

  • Jonathan W Pillow

National Institute of Mental Health (MH099611)

  • Jonathan W Pillow

Howard Hughes Medical Institute

  • Fred Rieke

National Institutes of Health (EY011850)

  • Fred Rieke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Tissue was obtained via the tissue distribution program at the Washington National Primate Research Center. All animal procedures were performed in accordance with IACUC protocols at the University of Washington (IACUC protocol number 4277-01).

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Publication history

  1. Received: March 22, 2019
  2. Accepted: December 17, 2019
  3. Accepted Manuscript published: December 18, 2019 (version 1)
  4. Version of Record published: January 29, 2020 (version 2)

Copyright

© 2019, Latimer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,301
    Page views
  • 225
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Shenghong He et al.
    Research Article Updated

    Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson’s disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Julien G Roth et al.
    Tools and Resources Updated

    Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of ‘footprint’-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information—available with the cell lines by request from the Simons Foundation Autism Research Initiative—with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.