A new family of cell surface located purine transporters in Microsporidia and related fungal endoparasites
Abstract
Plasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites. The universal retention among otherwise highly reduced genomes indicates an important role for these transporters for intracellular parasites. Using Trachipleistophora hominis, a Microsporidia isolated from an HIV/AIDS patient, as our experimental model, we show that the proteins are ATP and GTP transporters located on the surface of parasites during their intracellular growth and replication. Our work identifies a new route for the acquisition of essential energy and nucleotides for a major group of intracellular parasites that infect most animal species including humans.
Data availability
New sequences data were submitted to GenBank:1) RNA-Seq data: BioProject PRJNA278775 with the BioSample accession numbers SAMN11265032-SAMN11265043 (one accession for each of the two samples per time point post infection).2) The new native PCR cloned gene sequences have the following GenBank accession numbers: ThMFS2_native: MH824667; ThMFS3_native: MH8246683) Codon-optimized genes for expression in E. coli have the following GenBank accession numbers: ThMFS1_synthetic: MH824663; ThMFS2_synthetic: MH824664; ThMFS3_synthetic: MH824665; ThMFS4_synthetic: MH824666These are all listed in the Materials and Methods section, see Key Resources Table.
-
New native PCR cloned gene sequence (ThMFS2_native)NCBI GenBank, MH824667.
-
New native PCR cloned gene sequence (ThMFS3_native)NCBI GenBank, MH824668.
-
Annotation of genome dataNCBI Bioproject, PRJNA84343.
Article and author information
Author details
Funding
Wellcome (089803/Z/09/Z)
- T Martin Embley
European Research Council Advanced Investigator Program (ERC 2010-268701)
- T Martin Embley
Biotechnology and Biological Sciences Research Council (PhD studentship)
- Andrew K Watson
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Major et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,752
- views
-
- 286
- downloads
-
- 29
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.
-
- Cell Biology
- Evolutionary Biology
Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.