TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala

  1. Ke-Xin Li
  2. Mu He
  3. Wenlei Ye
  4. Jeffrey Simms
  5. Michael Gill
  6. Xuaner Xiang
  7. Yuh Nung Jan
  8. Lily Yeh Jan  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Gladstone Institute of Neurological Disease, United States

Abstract

TMEM16B (ANO2) is the Ca2+-activated chloride channel expressed in multiple brain regions, including the amygdala. Here we report that Ano2 knockout mice exhibit impaired anxiety-related behaviors and context-independent fear memory, thus implicating TMEM16B in anxiety modulation. We found that TMEM16B is expressed in somatostatin-positive (SOM+) GABAergic neurons of the central lateral amygdala (CeL), and its activity modulates action potential duration and inhibitory postsynaptic current (IPSC). We further provide evidence for TMEM16B actions not only in the soma but also in the presynaptic nerve terminals of GABAergic neurons. Our study reveals an intriguing role for TMEM16B in context-independent but not context-dependent fear memory, and supports the notion that dysfunction of the amygdala contributes to anxiety-related behaviors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ke-Xin Li

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mu He

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenlei Ye

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4694-1493
  4. Jeffrey Simms

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Gill

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xuaner Xiang

    Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuh Nung Jan

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1367-6299
  8. Lily Yeh Jan

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Lily.Jan@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3938-8498

Funding

National Institute for Health Research (RO1 NS069229)

  • Lily Yeh Jan

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F32HD089639)

  • Mu He

Howard Hughes Medical Institute

  • Yuh Nung Jan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lisa M Monteggia, Vanderbilt University, United States

Ethics

Animal experimentation: The use and care of the mice complied with the guidelines of the Institutional Animal Care and Use Committee of UCSF (IACUC protocol AN181236), in accordance with the US National Institute of Health guidelines.

Version history

  1. Received: March 24, 2019
  2. Accepted: September 4, 2019
  3. Accepted Manuscript published: September 4, 2019 (version 1)
  4. Version of Record published: September 16, 2019 (version 2)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,341
    views
  • 284
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ke-Xin Li
  2. Mu He
  3. Wenlei Ye
  4. Jeffrey Simms
  5. Michael Gill
  6. Xuaner Xiang
  7. Yuh Nung Jan
  8. Lily Yeh Jan
(2019)
TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala
eLife 8:e47106.
https://doi.org/10.7554/eLife.47106

Share this article

https://doi.org/10.7554/eLife.47106

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.