Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast

Abstract

Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.

Data availability

Data generated or analyzed during this study are included in the manuscript and supporting files. All imaging data used for analysis will be uploaded to the Image Data Resource repository.

Article and author information

Author details

  1. Grant A King

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Jay S Goodman

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Jennifer G Schick

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Keerthana Chetlapalli

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Danielle M Jorgens

    Electron Microscope Lab, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Kent L McDonald

    Electron Microscope Lab, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Elçin Ünal

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    elcin@berkeley.edu
    Competing interests
    Elçin Ünal, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6768-609X

Funding

National Institutes of Health (DP2 AG055946-01)

  • Elçin Ünal

Pew Charitable Trusts (00027344)

  • Elçin Ünal

Damon Runyon Cancer Research Foundation (35-15)

  • Elçin Ünal

Glenn Foundation for Medical Research

  • Elçin Ünal

National Science Foundation (DGE 1752814)

  • Grant A King

National Institutes of Health (T32 GM007232)

  • Grant A King

National Institutes of Health (F31AG060656)

  • Jay S Goodman

National Institutes of Health (T32 GM007127-41)

  • Jay S Goodman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Version history

  1. Received: March 26, 2019
  2. Accepted: July 19, 2019
  3. Accepted Manuscript published: August 9, 2019 (version 1)
  4. Version of Record published: August 27, 2019 (version 2)
  5. Version of Record updated: August 28, 2019 (version 3)
  6. Version of Record updated: September 5, 2019 (version 4)

Copyright

© 2019, King et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,640
    views
  • 781
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Grant A King
  2. Jay S Goodman
  3. Jennifer G Schick
  4. Keerthana Chetlapalli
  5. Danielle M Jorgens
  6. Kent L McDonald
  7. Elçin Ünal
(2019)
Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast
eLife 8:e47156.
https://doi.org/10.7554/eLife.47156

Share this article

https://doi.org/10.7554/eLife.47156

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.