Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast

Abstract

Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.

Data availability

Data generated or analyzed during this study are included in the manuscript and supporting files. All imaging data used for analysis will be uploaded to the Image Data Resource repository.

Article and author information

Author details

  1. Grant A King

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Jay S Goodman

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Jennifer G Schick

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Keerthana Chetlapalli

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Danielle M Jorgens

    Electron Microscope Lab, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Kent L McDonald

    Electron Microscope Lab, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Elçin Ünal

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    elcin@berkeley.edu
    Competing interests
    Elçin Ünal, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6768-609X

Funding

National Institutes of Health (DP2 AG055946-01)

  • Elçin Ünal

Pew Charitable Trusts (00027344)

  • Elçin Ünal

Damon Runyon Cancer Research Foundation (35-15)

  • Elçin Ünal

Glenn Foundation for Medical Research

  • Elçin Ünal

National Science Foundation (DGE 1752814)

  • Grant A King

National Institutes of Health (T32 GM007232)

  • Grant A King

National Institutes of Health (F31AG060656)

  • Jay S Goodman

National Institutes of Health (T32 GM007127-41)

  • Jay S Goodman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, King et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,832
    views
  • 797
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Grant A King
  2. Jay S Goodman
  3. Jennifer G Schick
  4. Keerthana Chetlapalli
  5. Danielle M Jorgens
  6. Kent L McDonald
  7. Elçin Ünal
(2019)
Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast
eLife 8:e47156.
https://doi.org/10.7554/eLife.47156

Share this article

https://doi.org/10.7554/eLife.47156

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Pyae Hein Htet, Edward Avezov, Eric Lauga
    Research Article

    The endoplasmic reticulum (ER), the largest cellular compartment, harbours the machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules extending throughout the cell. Understanding the influence of the ER morphology dynamics on molecular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its content. It has been recently proposed that intra-luminal transport may be enabled by active contractions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and their impact in facilitating active transport, of the active contractile behaviour of the different ER components along various time–space parameters. The results of the model indicate that reproducing transport with velocities similar to those reported experimentally in single-particle tracking would require unrealistically high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce experimental measurements, provided they are able to contract fast enough.

    1. Cell Biology
    Chenlu Kang, Pengcheng Chen ... Congying Wu
    Research Article

    Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient. By tracking live cell trajectory and analyzing the directionality of T cells and neutrophils, we observe that amoeboid cells can durotax. We further delineate the underlying mechanism to involve non-muscle myosin IIA (NMIIA) polarization towards the soft-matrix-side but may not require differential actin flow up- or down-stiffness gradient. Using the protista Dictyostelium, we demonstrate the evolutionary conservation of amoeboid durotaxis. Finally, these experimental phenomena are theoretically captured by an active gel model capable of mechanosensing. Collectively, these results may shed new lights on immune surveillance and recently identified confined migration of cancer cells, within the mechanically inhomogeneous tumor microenvironment or the inflamed fibrotic tissues.