Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast
Abstract
Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.
Data availability
Data generated or analyzed during this study are included in the manuscript and supporting files. All imaging data used for analysis will be uploaded to the Image Data Resource repository.
Article and author information
Author details
Funding
National Institutes of Health (DP2 AG055946-01)
- Elçin Ünal
Pew Charitable Trusts (00027344)
- Elçin Ünal
Damon Runyon Cancer Research Foundation (35-15)
- Elçin Ünal
Glenn Foundation for Medical Research
- Elçin Ünal
National Science Foundation (DGE 1752814)
- Grant A King
National Institutes of Health (T32 GM007232)
- Grant A King
National Institutes of Health (F31AG060656)
- Jay S Goodman
National Institutes of Health (T32 GM007127-41)
- Jay S Goodman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, King et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,860
- views
-
- 800
- downloads
-
- 57
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.
-
- Cell Biology
A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.