Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome

Abstract

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.

Data availability

Normalized and raw data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE125470).

The following data sets were generated

Article and author information

Author details

  1. Irene Bolea

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    irene.bolea@uab.cat
    Competing interests
    The authors declare that no competing interests exist.
  2. Alejandro Gella

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisenda Sanz

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7932-8556
  4. Patricia Prada-Dacasa

    Institut de Neurociencies, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Menardy

    Institut de Neurociencies, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8712-1344
  6. Angela M Bard

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pablo Machuca-Márquez

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7980-3839
  8. Abel Eraso-Pichot

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Guillem Mòdol-Caballero

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Xavier Navarro

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Franck Kalume

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5528-2565
  12. Albert Quintana

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seatle, United States
    For correspondence
    albert.quintana@uab.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1674-7160

Funding

Ministerio de Economía y Competitividad (JCI-2015-24576)

  • Irene Bolea

Ministerio de Economía y Competitividad (SAF2017-88108-R)

  • Albert Quintana

Agència de Gestió d'Ajuts Universitaris i de Recerca (2017SGR- 323)

  • Albert Quintana

CIBERNED (CB06/05/1105)

  • Xavier Navarro

TERCEL (RD16/0011/0014)

  • Xavier Navarro

Instituto de Salud Carlos III

  • Xavier Navarro

European Regional Development Funds

  • Xavier Navarro

Ministerio de ciencia, investigación y universidades (RTI2018-101838-J-I00)

  • Elisenda Sanz

European Commission (H2020-MSCA-COFUND-2014-665919)

  • Alejandro Gella

European Commission (H2020-MSCA-IF-2014-658352)

  • Elisenda Sanz

Ministerio de Economía y Competitividad (BES-2015-073041)

  • Patricia Prada-Dacasa

Seattle Children's Research Institute (Seed Funds)

  • Albert Quintana

Northwest Mitochondrial Guild (Seed Funds)

  • Albert Quintana

Ministerio de Economía y Competitividad (RyC-2012-1187)

  • Albert Quintana

European Research Council (ERC-2014-StG-638106)

  • Albert Quintana

Ministerio de Economía y Competitividad (SAF2014-57981P)

  • Albert Quintana

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted following the recommendations in the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Seattle Children´s Research Institute (#00108) and Universitat Autònoma de Barcelona (CEEAH 2925, 3295, 4114, 4155). All surgeries were performed under anesthesia, and every effor was made to minimize suffering.

Copyright

© 2019, Bolea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,444
    views
  • 579
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Bolea
  2. Alejandro Gella
  3. Elisenda Sanz
  4. Patricia Prada-Dacasa
  5. Fabien Menardy
  6. Angela M Bard
  7. Pablo Machuca-Márquez
  8. Abel Eraso-Pichot
  9. Guillem Mòdol-Caballero
  10. Xavier Navarro
  11. Franck Kalume
  12. Albert Quintana
(2019)
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome
eLife 8:e47163.
https://doi.org/10.7554/eLife.47163

Share this article

https://doi.org/10.7554/eLife.47163

Further reading

    1. Neuroscience
    Pál Barzó, Ildikó Szöts ... Gábor Tamás
    Research Article

    The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 y of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition, and age-related neurodegenerative diseases.

    1. Neuroscience
    Simon Weiler, Manuel Teichert, Troy W Margrie
    Research Article

    The neocortex comprises anatomically discrete yet interconnected areas that are symmetrically located across the two hemispheres. Determining the logic of these macrocircuits is necessary for understanding high level brain function. Here in mice, we have mapped the areal and laminar organization of the ipsi- and contralateral cortical projection onto the primary visual, somatosensory, and motor cortices. We find that although the ipsilateral hemisphere is the primary source of cortical input, there is substantial contralateral symmetry regarding the relative contribution and areal identity of input. Laminar analysis of these input areas show that excitatory Layer 6 corticocortical cells (L6 CCs) are a major projection pathway within and between the two hemispheres. Analysis of the relative contribution of inputs from supra- (feedforward) and infragranular (feedback) layers reveals that contra-hemispheric projections reflect a dominant feedback organization compared to their ipsi-cortical counterpart. The magnitude of the interhemispheric difference in hierarchy was largest for sensory and motor projection areas compared to frontal, medial, or lateral brain areas due to a proportional increase in input from L6 neurons. L6 CCs therefore not only mediate long-range cortical communication but also reflect its inherent feedback organization.