1. Neuroscience
Download icon

Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome

  1. Irene Bolea  Is a corresponding author
  2. Alejandro Gella
  3. Elisenda Sanz
  4. Patricia Prada-Dacasa
  5. Fabien Menardy
  6. Angela M Bard
  7. Pablo Machuca-Márquez
  8. Abel Eraso-Pichot
  9. Guillem Mòdol-Caballero
  10. Xavier Navarro
  11. Franck Kalume
  12. Albert Quintana  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. Universitat Autònoma de Barcelona, Spain
Research Article
  • Cited 10
  • Views 2,606
  • Annotations
Cite this article as: eLife 2019;8:e47163 doi: 10.7554/eLife.47163

Abstract

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.

Data availability

Normalized and raw data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE125470).

The following data sets were generated

Article and author information

Author details

  1. Irene Bolea

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    irene.bolea@uab.cat
    Competing interests
    The authors declare that no competing interests exist.
  2. Alejandro Gella

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisenda Sanz

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7932-8556
  4. Patricia Prada-Dacasa

    Institut de Neurociencies, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Menardy

    Institut de Neurociencies, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8712-1344
  6. Angela M Bard

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pablo Machuca-Márquez

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7980-3839
  8. Abel Eraso-Pichot

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Guillem Mòdol-Caballero

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Xavier Navarro

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Franck Kalume

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5528-2565
  12. Albert Quintana

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seatle, United States
    For correspondence
    albert.quintana@uab.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1674-7160

Funding

Ministerio de Economía y Competitividad (JCI-2015-24576)

  • Irene Bolea

Ministerio de Economía y Competitividad (SAF2017-88108-R)

  • Albert Quintana

Agència de Gestió d'Ajuts Universitaris i de Recerca (2017SGR- 323)

  • Albert Quintana

CIBERNED (CB06/05/1105)

  • Xavier Navarro

TERCEL (RD16/0011/0014)

  • Xavier Navarro

Instituto de Salud Carlos III

  • Xavier Navarro

European Regional Development Funds

  • Xavier Navarro

Ministerio de ciencia, investigación y universidades (RTI2018-101838-J-I00)

  • Elisenda Sanz

European Commission (H2020-MSCA-COFUND-2014-665919)

  • Alejandro Gella

European Commission (H2020-MSCA-IF-2014-658352)

  • Elisenda Sanz

Ministerio de Economía y Competitividad (BES-2015-073041)

  • Patricia Prada-Dacasa

Seattle Children's Research Institute (Seed Funds)

  • Albert Quintana

Northwest Mitochondrial Guild (Seed Funds)

  • Albert Quintana

Ministerio de Economía y Competitividad (RyC-2012-1187)

  • Albert Quintana

European Research Council (ERC-2014-StG-638106)

  • Albert Quintana

Ministerio de Economía y Competitividad (SAF2014-57981P)

  • Albert Quintana

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted following the recommendations in the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Seattle Children´s Research Institute (#00108) and Universitat Autònoma de Barcelona (CEEAH 2925, 3295, 4114, 4155). All surgeries were performed under anesthesia, and every effor was made to minimize suffering.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Publication history

  1. Received: March 26, 2019
  2. Accepted: August 11, 2019
  3. Accepted Manuscript published: August 12, 2019 (version 1)
  4. Version of Record published: September 6, 2019 (version 2)

Copyright

© 2019, Bolea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,606
    Page views
  • 369
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Xiaoxuan Jia et al.
    Research Article

    Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

    1. Neuroscience
    Nick Taubert et al.
    Research Article

    Dynamic facial expressions are crucial for communication in primates. Due to the difficulty to control shape and dynamics of facial expressions across species, it is unknown how species-specific facial expressions are perceptually encoded and interact with the representation of facial shape. While popular neural network models predict a joint encoding of facial shape and dynamics, the neuromuscular control of faces evolved more slowly than facial shape, suggesting a separate encoding. To investigate these alternative hypotheses, we developed photo-realistic human and monkey heads that were animated with motion capture data from monkeys and humans. Exact control of expression dynamics was accomplished by a Bayesian machine-learning technique. Consistent with our hypothesis, we found that human observers learned cross-species expressions very quickly, where face dynamics was represented largely independently of facial shape. This result supports the co-evolution of the visual processing and motor control of facial expressions, while it challenges appearance-based neural network theories of dynamic expression recognition.