Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome

Abstract

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.

Data availability

Normalized and raw data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE125470).

The following data sets were generated

Article and author information

Author details

  1. Irene Bolea

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    irene.bolea@uab.cat
    Competing interests
    The authors declare that no competing interests exist.
  2. Alejandro Gella

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisenda Sanz

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7932-8556
  4. Patricia Prada-Dacasa

    Institut de Neurociencies, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Menardy

    Institut de Neurociencies, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8712-1344
  6. Angela M Bard

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pablo Machuca-Márquez

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7980-3839
  8. Abel Eraso-Pichot

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Guillem Mòdol-Caballero

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Xavier Navarro

    Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Franck Kalume

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5528-2565
  12. Albert Quintana

    Center for Developmental Therapeutics, Seattle Children's Research Institute, Seatle, United States
    For correspondence
    albert.quintana@uab.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1674-7160

Funding

Ministerio de Economía y Competitividad (JCI-2015-24576)

  • Irene Bolea

Ministerio de Economía y Competitividad (SAF2017-88108-R)

  • Albert Quintana

Agència de Gestió d'Ajuts Universitaris i de Recerca (2017SGR- 323)

  • Albert Quintana

CIBERNED (CB06/05/1105)

  • Xavier Navarro

TERCEL (RD16/0011/0014)

  • Xavier Navarro

Instituto de Salud Carlos III

  • Xavier Navarro

European Regional Development Funds

  • Xavier Navarro

Ministerio de ciencia, investigación y universidades (RTI2018-101838-J-I00)

  • Elisenda Sanz

European Commission (H2020-MSCA-COFUND-2014-665919)

  • Alejandro Gella

European Commission (H2020-MSCA-IF-2014-658352)

  • Elisenda Sanz

Ministerio de Economía y Competitividad (BES-2015-073041)

  • Patricia Prada-Dacasa

Seattle Children's Research Institute (Seed Funds)

  • Albert Quintana

Northwest Mitochondrial Guild (Seed Funds)

  • Albert Quintana

Ministerio de Economía y Competitividad (RyC-2012-1187)

  • Albert Quintana

European Research Council (ERC-2014-StG-638106)

  • Albert Quintana

Ministerio de Economía y Competitividad (SAF2014-57981P)

  • Albert Quintana

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Ethics

Animal experimentation: All experiments were conducted following the recommendations in the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Seattle Children´s Research Institute (#00108) and Universitat Autònoma de Barcelona (CEEAH 2925, 3295, 4114, 4155). All surgeries were performed under anesthesia, and every effor was made to minimize suffering.

Version history

  1. Received: March 26, 2019
  2. Accepted: August 11, 2019
  3. Accepted Manuscript published: August 12, 2019 (version 1)
  4. Version of Record published: September 6, 2019 (version 2)

Copyright

© 2019, Bolea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,032
    Page views
  • 532
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Bolea
  2. Alejandro Gella
  3. Elisenda Sanz
  4. Patricia Prada-Dacasa
  5. Fabien Menardy
  6. Angela M Bard
  7. Pablo Machuca-Márquez
  8. Abel Eraso-Pichot
  9. Guillem Mòdol-Caballero
  10. Xavier Navarro
  11. Franck Kalume
  12. Albert Quintana
(2019)
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome
eLife 8:e47163.
https://doi.org/10.7554/eLife.47163

Share this article

https://doi.org/10.7554/eLife.47163

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.