Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome
Abstract
Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.
Data availability
Normalized and raw data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE125470).
-
Gene expression analysis in the Brainstem of Vglut2:Ndufs4cKO miceNCBI Gene Expression Omnibus, GSE125470.
Article and author information
Author details
Funding
Ministerio de Economía y Competitividad (JCI-2015-24576)
- Irene Bolea
Ministerio de Economía y Competitividad (SAF2017-88108-R)
- Albert Quintana
Agència de Gestió d'Ajuts Universitaris i de Recerca (2017SGR- 323)
- Albert Quintana
CIBERNED (CB06/05/1105)
- Xavier Navarro
TERCEL (RD16/0011/0014)
- Xavier Navarro
Instituto de Salud Carlos III
- Xavier Navarro
European Regional Development Funds
- Xavier Navarro
Ministerio de ciencia, investigación y universidades (RTI2018-101838-J-I00)
- Elisenda Sanz
European Commission (H2020-MSCA-COFUND-2014-665919)
- Alejandro Gella
European Commission (H2020-MSCA-IF-2014-658352)
- Elisenda Sanz
Ministerio de Economía y Competitividad (BES-2015-073041)
- Patricia Prada-Dacasa
Seattle Children's Research Institute (Seed Funds)
- Albert Quintana
Northwest Mitochondrial Guild (Seed Funds)
- Albert Quintana
Ministerio de Economía y Competitividad (RyC-2012-1187)
- Albert Quintana
European Research Council (ERC-2014-StG-638106)
- Albert Quintana
Ministerio de Economía y Competitividad (SAF2014-57981P)
- Albert Quintana
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were conducted following the recommendations in the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Seattle Children´s Research Institute (#00108) and Universitat Autònoma de Barcelona (CEEAH 2925, 3295, 4114, 4155). All surgeries were performed under anesthesia, and every effor was made to minimize suffering.
Reviewing Editor
- Matt Kaeberlein, University of Washington, United States
Version history
- Received: March 26, 2019
- Accepted: August 11, 2019
- Accepted Manuscript published: August 12, 2019 (version 1)
- Version of Record published: September 6, 2019 (version 2)
Copyright
© 2019, Bolea et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,766
- Page views
-
- 494
- Downloads
-
- 23
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4–4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
-
- Neuroscience
How does the human brain combine information across the eyes? It has been known for many years that cortical normalization mechanisms implement ‘ocularity invariance’: equalizing neural responses to spatial patterns presented either monocularly or binocularly. Here, we used a novel combination of electrophysiology, psychophysics, pupillometry, and computational modeling to ask whether this invariance also holds for flickering luminance stimuli with no spatial contrast. We find dramatic violations of ocularity invariance for these stimuli, both in the cortex and also in the subcortical pathways that govern pupil diameter. Specifically, we find substantial binocular facilitation in both pathways with the effect being strongest in the cortex. Near-linear binocular additivity (instead of ocularity invariance) was also found using a perceptual luminance matching task. Ocularity invariance is, therefore, not a ubiquitous feature of visual processing, and the brain appears to repurpose a generic normalization algorithm for different visual functions by adjusting the amount of interocular suppression.