Defined neuronal populations drive fatal phenotype in a mouse model of Leigh Syndrome
Abstract
Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.
Data availability
Normalized and raw data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE125470).
-
Gene expression analysis in the Brainstem of Vglut2:Ndufs4cKO miceNCBI Gene Expression Omnibus, GSE125470.
Article and author information
Author details
Funding
Ministerio de Economía y Competitividad (JCI-2015-24576)
- Irene Bolea
Ministerio de Economía y Competitividad (SAF2017-88108-R)
- Albert Quintana
Agència de Gestió d'Ajuts Universitaris i de Recerca (2017SGR- 323)
- Albert Quintana
CIBERNED (CB06/05/1105)
- Xavier Navarro
TERCEL (RD16/0011/0014)
- Xavier Navarro
Instituto de Salud Carlos III
- Xavier Navarro
European Regional Development Funds
- Xavier Navarro
Ministerio de ciencia, investigación y universidades (RTI2018-101838-J-I00)
- Elisenda Sanz
European Commission (H2020-MSCA-COFUND-2014-665919)
- Alejandro Gella
European Commission (H2020-MSCA-IF-2014-658352)
- Elisenda Sanz
Ministerio de Economía y Competitividad (BES-2015-073041)
- Patricia Prada-Dacasa
Seattle Children's Research Institute (Seed Funds)
- Albert Quintana
Northwest Mitochondrial Guild (Seed Funds)
- Albert Quintana
Ministerio de Economía y Competitividad (RyC-2012-1187)
- Albert Quintana
European Research Council (ERC-2014-StG-638106)
- Albert Quintana
Ministerio de Economía y Competitividad (SAF2014-57981P)
- Albert Quintana
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were conducted following the recommendations in the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Seattle Children´s Research Institute (#00108) and Universitat Autònoma de Barcelona (CEEAH 2925, 3295, 4114, 4155). All surgeries were performed under anesthesia, and every effor was made to minimize suffering.
Copyright
© 2019, Bolea et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,303
- views
-
- 567
- downloads
-
- 42
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.
-
- Neuroscience
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.