GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients

Abstract

GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. The GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1–LPL complex is crucial for generating lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent in capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We document, by NanoSIMS imaging, that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells.

Data availability

All data generated during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Xuchen Hu

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Ken Matsumoto

    Vascular Patterning Lab, VIB-KU Leuven Center for Cancer Biology (CCB), Leuven, Belgium
    Competing interests
    No competing interests declared.
  3. Rachel S Jung

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Thomas A Weston

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Patrick J Heizer

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Cuiwen He

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Norma P Sandoval

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Christopher M Allan

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Yiping Tu

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Harry V Vinters

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Linda M Liau

    Department of Neurosurgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Rochelle M Ellison

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  13. Jazmin E Morales

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Lynn J Baufeld

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  15. Nicholas A Bayley

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  16. Liqun He

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    No competing interests declared.
  17. Christer Betsholtz

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    No competing interests declared.
  18. Anne P Beigneux

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  19. David A Nathanson

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  20. Holger Gerhardt

    Integrative Vascular Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    Holger Gerhardt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3030-0384
  21. Stephen G Young

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    sgyoung@mednet.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7270-3176
  22. Loren G Fong

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    lfong@mednet.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4465-5290
  23. Haibo Jiang

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    haibo.jiang@uwa.edu.au
    Competing interests
    No competing interests declared.

Funding

National Heart, Lung, and Blood Institute (HL090553)

  • Stephen G Young

National Heart, Lung, and Blood Institute (HL087228)

  • Stephen G Young

National Heart, Lung, and Blood Institute (HL125335)

  • Stephen G Young

Foundation Leduq (12CVD04)

  • Stephen G Young

Ruth L. Kirschstein National Research Service Award (T32HL69766)

  • Xuchen Hu

National Institute of General Medical Sciences (GM008042)

  • Xuchen Hu

NCI Brain Tumor SPORE (P50-CA211015)

  • Linda M Liau

Stichting Tegen Kanker (2012‐181)

  • Holger Gerhardt

Stichting Tegen Kanker (2018-074)

  • Holger Gerhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal housing and experimental protocols were approved by UCLA's Animal Research Committee (ARC; 2004-125-51, 2016-005) and the Institutional Animal Care and Research Advisory Committee of the KU Leuven (085/2016). The animals were housed in an AAALAC (Association for Assessment and Accreditation of Laboratory Animal Care International)-approved facility and cared for according to guidelines established by UCLA's Animal Research Committee.

Human subjects: All tissue samples from patients were obtained after informed consent and with approval from the UCLA Institutional Review Board (IRB; protocol 10-000655).

Reviewing Editor

  1. Arun Radhakrishnan, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: March 27, 2019
  2. Accepted: June 5, 2019
  3. Accepted Manuscript published: June 6, 2019 (version 1)
  4. Version of Record published: June 26, 2019 (version 2)

Copyright

© 2019, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,447
    Page views
  • 233
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuchen Hu
  2. Ken Matsumoto
  3. Rachel S Jung
  4. Thomas A Weston
  5. Patrick J Heizer
  6. Cuiwen He
  7. Norma P Sandoval
  8. Christopher M Allan
  9. Yiping Tu
  10. Harry V Vinters
  11. Linda M Liau
  12. Rochelle M Ellison
  13. Jazmin E Morales
  14. Lynn J Baufeld
  15. Nicholas A Bayley
  16. Liqun He
  17. Christer Betsholtz
  18. Anne P Beigneux
  19. David A Nathanson
  20. Holger Gerhardt
  21. Stephen G Young
  22. Loren G Fong
  23. Haibo Jiang
(2019)
GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients
eLife 8:e47178.
https://doi.org/10.7554/eLife.47178

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Xiaoquan Zhu, Chao Chen ... Yanyang Zhao
    Research Article Updated

    Identification oncogenes is fundamental to revealing the molecular basis of cancer. Here, we found that FOXP2 is overexpressed in human prostate cancer cells and prostate tumors, but its expression is absent in normal prostate epithelial cells and low in benign prostatic hyperplasia. FOXP2 is a FOX transcription factor family member and tightly associated with vocal development. To date, little is known regarding the link of FOXP2 to prostate cancer. We observed that high FOXP2 expression and frequent amplification are significantly associated with high Gleason score. Ectopic expression of FOXP2 induces malignant transformation of mouse NIH3T3 fibroblasts and human prostate epithelial cell RWPE-1. Conversely, FOXP2 knockdown suppresses the proliferation of prostate cancer cells. Transgenic overexpression of FOXP2 in the mouse prostate causes prostatic intraepithelial neoplasia. Overexpression of FOXP2 aberrantly activates oncogenic MET signaling and inhibition of MET signaling effectively reverts the FOXP2-induced oncogenic phenotype. CUT&Tag assay identified FOXP2-binding sites located in MET and its associated gene HGF. Additionally, the novel recurrent FOXP2-CPED1 fusion identified in prostate tumors results in high expression of truncated FOXP2, which exhibit a similar capacity for malignant transformation. Together, our data indicate that FOXP2 is involved in tumorigenicity of prostate.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Sevim Kahraman, Kimitaka Shibue ... Rohit N Kulkarni
    Tools and Resources

    Pancreatic a-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human a-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality a-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live a-cells from dissociated human islet cells with ~ 95% purity. The a-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form a-pseudoislets. The a-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key a-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in a-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary a-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.