Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion

  1. Yoki Nakamura
  2. Dilyan I Dryanovski
  3. Yuriko Kimura
  4. Shelley N Jackson
  5. Amina S Woods
  6. Yuko Yasui
  7. Shang-Yi Tsai
  8. Sachin Patel
  9. Daniel P Covey
  10. Tsung-Ping Su
  11. Carl Lupica  Is a corresponding author
  1. National Institute on Drug Abuse, National Institutes of Health, United States
  2. Vanderbilt University Medical Center, United States
  3. University of Maryland School of Medicine, United States

Abstract

Cocaine is an addictive drug that acts in brain reward areas. Recent evidence suggests that cocaine stimulates synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) in midbrain, increasing dopamine neuron activity via disinhibition. Although a mechanism for cocaine-stimulated 2-AG synthesis is known, our understanding of 2-AG release is limited. In NG108 cells and mouse midbrain tissue we find that 2-AG is localized in non-synaptic extracellular vesicles (EVs) that are secreted in the presence of cocaine via interaction with the chaperone protein sigma-1 receptor (Sig-1R). The release of EVs occurs when cocaine causes dissociation of the Sig-1R from ADP-ribosylation factor (ARF6), a G-protein regulating EV trafficking, leading to activation of myosin light chain kinase (MLCK). Blockade of Sig-1R function, or inhibition of ARF6 or MLCK also prevented cocaine-induced EV release and cocaine-stimulated 2-AG-modulation of inhibitory synapses in DA neurons. Our results implicate the Sig-1R-ARF6 complex in control of EV release and demonstrate that cocaine-mediated 2-AG release can occur via EVs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yoki Nakamura

    Cellular Pathobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dilyan I Dryanovski

    Electrophysiology Research Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuriko Kimura

    Cellular Pathobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shelley N Jackson

    Structural Biology Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amina S Woods

    Structural Biology Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuko Yasui

    Cellular Pathobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shang-Yi Tsai

    Cellular Pathobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sachin Patel

    Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8052-520X
  9. Daniel P Covey

    Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9596-108X
  10. Tsung-Ping Su

    Cellular Pathobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Carl Lupica

    Electrophysiology Research Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    For correspondence
    clupica@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5375-3263

Funding

National Institute on Drug Abuse (1ZIADA000487-14)

  • Carl Lupica

National Institute on Drug Abuse (1ZIADA000206-33)

  • Tsung-Ping Su

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Oregon Health and Science University, United States

Ethics

Animal experimentation: Ethics Statement: All animal procedures were conducted in accordance with the principles as indicated by the NIH Guide for the Care and Use of Laboratory Animals. These animal protocols were also reviewed and approved by the NIDA intramural research program Animal Care and Use Committee, which is fully accredited by the Assessment and Accreditation of Laboratory Animal Care (AAALAC) International (approved protocols: 17-CNRB-15, 16-CNRB-128, 16-INB-1, 16-INB-3, 17-INB-5).

Version history

  1. Received: March 28, 2019
  2. Accepted: October 3, 2019
  3. Accepted Manuscript published: October 9, 2019 (version 1)
  4. Version of Record published: November 12, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,392
    views
  • 583
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoki Nakamura
  2. Dilyan I Dryanovski
  3. Yuriko Kimura
  4. Shelley N Jackson
  5. Amina S Woods
  6. Yuko Yasui
  7. Shang-Yi Tsai
  8. Sachin Patel
  9. Daniel P Covey
  10. Tsung-Ping Su
  11. Carl Lupica
(2019)
Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion
eLife 8:e47209.
https://doi.org/10.7554/eLife.47209

Share this article

https://doi.org/10.7554/eLife.47209

Further reading

    1. Cell Biology
    Elizabeth A Beath, Cynthia Bailey ... Francis J McNally
    Research Article

    Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.