Brian 2, an intuitive and efficient neural simulator

  1. Marcel Stimberg  Is a corresponding author
  2. Romain Brette
  3. Dan FM Goodman
  1. Sorbonne Université, INSERM, CNRS, France
  2. Imperial College London, United Kingdom

Abstract

Brian 2 allows scientists to simply and efficiently simulate spiking neural network models. These models can feature novel dynamical equations, their interactions with the environment, and experimental protocols. To preserve high performance when defining new models, most simulators offer two options: low-level programming or description languages. The first option requires expertise, is prone to errors, and is problematic for reproducibility. The second option cannot describe all aspects of a computational experiment, such as the potentially complex logic of a stimulation protocol. Brian addresses these issues using runtime code generation. Scientists write code with simple and concise high-level descriptions, and Brian transforms them into efficient low-level code that can run interleaved with their code. We illustrate this with several challenging examples: a plastic model of the pyloric network, a closed-loop sensorimotor model, a programmatic exploration of a neuron model, and an auditory model with real-time input.

Data availability

Source code to replicate Figures 1-7, as well as the simulations shown in Appendix 4, are provided in a github repository (https://github.com/brian-team/brian2_paper_examples). Source code to run benchmarks as presented in Figure 8 is provided as a supplementary file together with this submission (benchmark_code.zip)

Article and author information

Author details

  1. Marcel Stimberg

    Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
    For correspondence
    marcel.stimberg@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2648-4790
  2. Romain Brette

    Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0110-1623
  3. Dan FM Goodman

    Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1007-6474

Funding

Agence Nationale de la Recherche (Axode ANR-14-CE13-0003)

  • Romain Brette

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, Krembil Research Institute, University Health Network, Canada

Version history

  1. Received: April 1, 2019
  2. Accepted: August 19, 2019
  3. Accepted Manuscript published: August 20, 2019 (version 1)
  4. Version of Record published: October 10, 2019 (version 2)

Copyright

© 2019, Stimberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,919
    views
  • 1,313
    downloads
  • 348
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcel Stimberg
  2. Romain Brette
  3. Dan FM Goodman
(2019)
Brian 2, an intuitive and efficient neural simulator
eLife 8:e47314.
https://doi.org/10.7554/eLife.47314

Share this article

https://doi.org/10.7554/eLife.47314

Further reading

    1. Neuroscience
    Qianli Yang
    Insight

    Subpopulations of neurons in the subthalamic nucleus have distinct activity patterns that relate to the three hypotheses of the Drift Diffusion Model.

    1. Neuroscience
    Jakub Onysk, Nicholas Gregory ... Flavia Mancini
    Research Article

    The placebo and nocebo effects highlight the importance of expectations in modulating pain perception, but in everyday life we don’t need an external source of information to form expectations about pain. The brain can learn to predict pain in a more fundamental way, simply by experiencing fluctuating, non-random streams of noxious inputs, and extracting their temporal regularities. This process is called statistical learning. Here, we address a key open question: does statistical learning modulate pain perception? We asked 27 participants to both rate and predict pain intensity levels in sequences of fluctuating heat pain. Using a computational approach, we show that probabilistic expectations and confidence were used to weigh pain perception and prediction. As such, this study goes beyond well-established conditioning paradigms associating non-pain cues with pain outcomes, and shows that statistical learning itself shapes pain experience. This finding opens a new path of research into the brain mechanisms of pain regulation, with relevance to chronic pain where it may be dysfunctional.