Abstract

Only a subset of cancer patients respond to T-cell checkpoint inhibitors, highlighting the need for alternative immunotherapeutics. We performed CRISPR-Cas9 screens in a leukemia cell line to identify perturbations that enhance natural killer effector functions. Our screens defined critical components of the tumor-immune synapse and highlighted the importance of cancer cell interferon-g signaling in modulating NK activity. Surprisingly, disrupting the ubiquitin ligase substrate adaptor DCAF15 strongly sensitized cancer cells to NK-mediated clearance. DCAF15 disruption induced an inflamed state in leukemic cells, including increased expression of lymphocyte costimulatory molecules. Proteomic and biochemical analysis revealed that cohesin complex members were endogenous client substrates of DCAF15. Genetic disruption of DCAF15 was phenocopied by treatment with indisulam, an anticancer drug that functions through DCAF15 engagement. In AML patients, reduced DCAF15 expression was associated with improved survival. These findings suggest that DCAF15 inhibition may have useful immunomodulatory properties in the treatment of myeloid neoplasms.

Data availability

Sequencing data have been deposited in GEO under accession code GSE134173.All data generated or analyzed during this study are included in the manuscript and supporting files.Figure 1C: Table S2Figure 2D: Table S3Figure 4F: Table S4Figure 7C: Table S6

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Matthew Pech

    Department of Oncology, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Matthew Pech, employee of Calico Life Sciences, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1451-0234
  2. Linda E Fong

    Department of Oncology, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Linda E Fong, employee of Calico Life Sciences, LLC.
  3. Jacqueline E Villalta

    Department of Oncology, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Jacqueline E Villalta, employee of Calico Life Sciences, LLC.
  4. Leanne JG Chan

    Department of Proteomics, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Leanne JG Chan, employee of Calico Life Sciences, LLC.
  5. Samir Kharbanda

    Department of Oncology, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Samir Kharbanda, employee of Calico Life Sciences, LLC.
  6. Jonathon J O'Brien

    Department of Proteomics, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Jonathon J O'Brien, employee of Calico Life Sciences, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9660-4797
  7. Fiona E McAllister

    Department of Proteomics, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Fiona E McAllister, employee of Calico Life Sciences, LLC.
  8. Ari J. Firestone

    Department of Oncology, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Ari J. Firestone, employee of Calico Life Sciences, LLC.
  9. Calvin H Jan

    Department of Research, Calico Life Sciences LLC, South San Francisco, United States
    Competing interests
    Calvin H Jan, employee of Calico Life Sciences, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9033-4028
  10. Jeffrey Settleman

    Department of Oncology, Calico Life Sciences LLC, San Diego, United States
    For correspondence
    jsettleman@gmail.com
    Competing interests
    Jeffrey Settleman, employee of Calico Life Sciences, LLC; Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3569-6493

Funding

Calico Life Sciences LLC

  • Matthew Pech
  • Linda E Fong
  • Jacqueline E Villalta
  • Leanne JG Chan
  • Samir Kharbanda
  • Jonathon J O'Brien
  • Fiona E McAllister
  • Ari J. Firestone
  • Calvin H Jan
  • Jeffrey Settleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Pech et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,643
    views
  • 1,606
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Pech
  2. Linda E Fong
  3. Jacqueline E Villalta
  4. Leanne JG Chan
  5. Samir Kharbanda
  6. Jonathon J O'Brien
  7. Fiona E McAllister
  8. Ari J. Firestone
  9. Calvin H Jan
  10. Jeffrey Settleman
(2019)
Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance
eLife 8:e47362.
https://doi.org/10.7554/eLife.47362

Share this article

https://doi.org/10.7554/eLife.47362

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Cancer Biology
    Hyungtai Sim, Hyun Jung Park ... Murim Choi
    Research Article

    Clonal hematopoiesis of indeterminate potential (CHIP) allows estimation of clonal dynamics and documentation of somatic mutations in the hematopoietic system. Recent studies utilizing large cohorts of the general population and patients have revealed significant associations of CHIP burden with age and disease status, including in cancer and chronic diseases. An increasing number of cancer patients are treated with immune checkpoint inhibitors (ICIs), but the association of ICI response in non-small cell lung cancer (NSCLC) patients with CHIP burden remains to be determined. We collected blood samples from 100 metastatic NSCLC patients before and after ICI for high-depth sequencing of the CHIP panel and 63 samples for blood single-cell RNA sequencing. Whole exome sequencing was performed in an independent replication cohort of 180 patients. The impact of CHIP status on the immunotherapy response was not significant. However, metastatic lung cancer patients showed higher CHIP prevalence (44/100 for patients vs. 5/42 for controls; p = 0.01). In addition, lung squamous cell carcinoma (LUSC) patients showed increased burden of larger clones compared to lung adenocarcinoma (LUAD) patients (8/43 for LUSC vs. 2/50 for LUAD; p = 0.04). Furthermore, single-cell RNA-seq analysis of the matched patients showed significant enrichment of inflammatory pathways mediated by NF-κB in myeloid clusters of the severe CHIP group. Our findings suggest minimal involvement of CHIP mutation and clonal dynamics during immunotherapy but a possible role of CHIP as an indicator of immunologic response in NSCLC patients.