Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa

  1. Dominique H Limoli  Is a corresponding author
  2. Elizabeth A Warren
  3. Kaitlin D Yarrington
  4. Niles P Donegan
  5. Ambrose L Cheung
  6. George O'Toole
  1. University of Iowa Carver College of Medicine, United States
  2. The Geisel School of Medicine at Dartmouth, United States

Abstract

Microbes often live in multispecies communities where interactions among community members impact both the individual constituents and the surrounding environment. Here, we developed a system to visualize interspecies behaviors at initial encounters. By imaging two prevalent pathogens known to be coisolated from chronic illnesses, Pseudomonas aeruginosa and Staphylococcus aureus, we observed P. aeruginosa can modify surface motility in response to secreted factors from S. aureus. Upon sensing S. aureus, P. aeruginosa transitioned from collective to single-cell motility with an associated increase in speed and directedness - a behavior we refer to as 'exploratory motility'. Explorer cells moved preferentially towards S. aureus and invaded S. aureus colonies through the action of the type IV pili. These studies reveal previously undescribed motility behaviors and lend insight into how P. aeruginosa senses and responds to other species. Identifying strategies to harness these interactions may open avenues for new antimicrobial strategies.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dominique H Limoli

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    For correspondence
    dominique-limoli@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-337X
  2. Elizabeth A Warren

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaitlin D Yarrington

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Niles P Donegan

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8328-2044
  5. Ambrose L Cheung

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. George O'Toole

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Cystic Fibrosis Foundation (Postdoctoral Fellowship LIMOLI15F0)

  • Dominique H Limoli

Cystic Fibrosis Foundation (CFF Postdoc-to-Faculty Transition Award LIMOLI18F5)

  • Dominique H Limoli

National Institutes of Health (Grant R37 AI83256)

  • George O'Toole

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dianne K Newman, California Institute of Technology, United States

Version history

  1. Received: April 3, 2019
  2. Accepted: October 30, 2019
  3. Accepted Manuscript published: November 12, 2019 (version 1)
  4. Version of Record published: December 13, 2019 (version 2)

Copyright

© 2019, Limoli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,336
    views
  • 1,059
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominique H Limoli
  2. Elizabeth A Warren
  3. Kaitlin D Yarrington
  4. Niles P Donegan
  5. Ambrose L Cheung
  6. George O'Toole
(2019)
Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa
eLife 8:e47365.
https://doi.org/10.7554/eLife.47365

Share this article

https://doi.org/10.7554/eLife.47365

Further reading

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.