Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa

  1. Dominique H Limoli  Is a corresponding author
  2. Elizabeth A Warren
  3. Kaitlin D Yarrington
  4. Niles P Donegan
  5. Ambrose L Cheung
  6. George O'Toole
  1. University of Iowa Carver College of Medicine, United States
  2. The Geisel School of Medicine at Dartmouth, United States

Abstract

Microbes often live in multispecies communities where interactions among community members impact both the individual constituents and the surrounding environment. Here, we developed a system to visualize interspecies behaviors at initial encounters. By imaging two prevalent pathogens known to be coisolated from chronic illnesses, Pseudomonas aeruginosa and Staphylococcus aureus, we observed P. aeruginosa can modify surface motility in response to secreted factors from S. aureus. Upon sensing S. aureus, P. aeruginosa transitioned from collective to single-cell motility with an associated increase in speed and directedness - a behavior we refer to as 'exploratory motility'. Explorer cells moved preferentially towards S. aureus and invaded S. aureus colonies through the action of the type IV pili. These studies reveal previously undescribed motility behaviors and lend insight into how P. aeruginosa senses and responds to other species. Identifying strategies to harness these interactions may open avenues for new antimicrobial strategies.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dominique H Limoli

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    For correspondence
    dominique-limoli@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-337X
  2. Elizabeth A Warren

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaitlin D Yarrington

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Niles P Donegan

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8328-2044
  5. Ambrose L Cheung

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. George O'Toole

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Cystic Fibrosis Foundation (Postdoctoral Fellowship LIMOLI15F0)

  • Dominique H Limoli

Cystic Fibrosis Foundation (CFF Postdoc-to-Faculty Transition Award LIMOLI18F5)

  • Dominique H Limoli

National Institutes of Health (Grant R37 AI83256)

  • George O'Toole

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Limoli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,493
    views
  • 1,081
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominique H Limoli
  2. Elizabeth A Warren
  3. Kaitlin D Yarrington
  4. Niles P Donegan
  5. Ambrose L Cheung
  6. George O'Toole
(2019)
Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa
eLife 8:e47365.
https://doi.org/10.7554/eLife.47365

Share this article

https://doi.org/10.7554/eLife.47365

Further reading

    1. Microbiology and Infectious Disease
    Yang Fu, Xiao-Dan Luo ... Wence Wang
    Research Article

    The gut microbiota is implicated in the pathogenesis of hyperuricemia (HUA) and gout. However, it remains unclear whether probiotics residing in the host gut, such as Lactobacillus, can prevent HUA development. Herein, we isolated Lactobacillus plantarum SQ001 from the cecum of HUA geese and conducted in vitro assays on uric acid (UA) and nucleoside co-culture. Metabolomics and genome-wide analyses, revealed that this strain may promote nucleoside uptake and hydrolysis through its nucleoside hydrolase gene. The functional role of iunH gene was confirmed via heterologous expression and gene knockout studies. Oral administration of L. plantarum SQ001 resulted in increased abundance of Lactobacillus species and reduced serum UA levels. Furthermore, it downregulated hepatic xanthine oxidase, a key enzyme involved in UA synthesis, as well as renal reabsorption protein GLUT9, while enhancing the expression of renal excretion protein ABCG2. Our findings suggest that L. plantarum has potential to ameliorate gut microbial dysbiosis with HUA, thereby offering insights into its potential application as a probiotic therapy for individuals with HUA or gout.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Lina Antenucci, Salla Virtanen ... Perttu Permi
    Research Article

    Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.