Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa

  1. Dominique H Limoli  Is a corresponding author
  2. Elizabeth A Warren
  3. Kaitlin D Yarrington
  4. Niles P Donegan
  5. Ambrose L Cheung
  6. George O'Toole
  1. University of Iowa Carver College of Medicine, United States
  2. The Geisel School of Medicine at Dartmouth, United States

Abstract

Microbes often live in multispecies communities where interactions among community members impact both the individual constituents and the surrounding environment. Here, we developed a system to visualize interspecies behaviors at initial encounters. By imaging two prevalent pathogens known to be coisolated from chronic illnesses, Pseudomonas aeruginosa and Staphylococcus aureus, we observed P. aeruginosa can modify surface motility in response to secreted factors from S. aureus. Upon sensing S. aureus, P. aeruginosa transitioned from collective to single-cell motility with an associated increase in speed and directedness - a behavior we refer to as 'exploratory motility'. Explorer cells moved preferentially towards S. aureus and invaded S. aureus colonies through the action of the type IV pili. These studies reveal previously undescribed motility behaviors and lend insight into how P. aeruginosa senses and responds to other species. Identifying strategies to harness these interactions may open avenues for new antimicrobial strategies.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dominique H Limoli

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    For correspondence
    dominique-limoli@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4130-337X
  2. Elizabeth A Warren

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaitlin D Yarrington

    Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Niles P Donegan

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8328-2044
  5. Ambrose L Cheung

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. George O'Toole

    Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Cystic Fibrosis Foundation (Postdoctoral Fellowship LIMOLI15F0)

  • Dominique H Limoli

Cystic Fibrosis Foundation (CFF Postdoc-to-Faculty Transition Award LIMOLI18F5)

  • Dominique H Limoli

National Institutes of Health (Grant R37 AI83256)

  • George O'Toole

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dianne K Newman, California Institute of Technology, United States

Publication history

  1. Received: April 3, 2019
  2. Accepted: October 30, 2019
  3. Accepted Manuscript published: November 12, 2019 (version 1)
  4. Version of Record published: December 13, 2019 (version 2)

Copyright

© 2019, Limoli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,164
    Page views
  • 919
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominique H Limoli
  2. Elizabeth A Warren
  3. Kaitlin D Yarrington
  4. Niles P Donegan
  5. Ambrose L Cheung
  6. George O'Toole
(2019)
Interspecies interactions induce exploratory motility in Pseudomonas aeruginosa
eLife 8:e47365.
https://doi.org/10.7554/eLife.47365

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Arianne M Babina, Serhiy Surkov ... Michael Knopp
    Research Article Updated

    Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (≤50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5′ end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences.

    1. Developmental Biology
    2. Microbiology and Infectious Disease
    Xuan Tang, Jiao Zhou ... Jianghua Sun
    Research Article

    Many pathogens rely on their insect vectors for transmission. Such pathogens are under selection to improve vector competence for their transmission by employing various tissue or cellular responses of vectors. However, whether pathogens can actively cause hypoxia in vectors and exploit hypoxia responses to promote their vector competence is still unknown. Fast dispersal of pinewood nematode (PWN), the causal agent for the destructive pine wilt disease and subsequent infection of pine trees, is characterized by the high vector competence of pine sawyer beetles (Monochamus spp.), and a single beetle can harbor over 200,000 PWNs in its tracheal system. Here, we demonstrate that PWN loading activates hypoxia in tracheal system of the vector beetles. Both PWN loading and hypoxia enhanced tracheal elasticity and thickened the apical extracellular matrix (aECM) of the tracheal tubes while a notable upregulated expression of a resilin-like mucin protein Muc91C was observed at the aECM layer of PWN-loaded and hypoxic tracheal tubes. RNAi knockdown of Muc91C reduced tracheal elasticity and aECM thickness under hypoxia conditions and thus decreasing PWN loading. Our study suggests a crucial role of hypoxia-induced developmental responses in shaping vector tolerance to the pathogen and provides clues for potential molecular targets to control pathogen dissemination.