1. Structural Biology and Molecular Biophysics
Download icon

HDX-MS reveals nucleotide-based, anti-correlated opening and closure of SecA/ SecY channels of the bacterial translocon

  1. Zainab Ahdash
  2. Euan Pyle
  3. William John Allen
  4. Robin A Corey
  5. Ian Collinson  Is a corresponding author
  6. Argyris Politis  Is a corresponding author
  1. King's College London, United Kingdom
  2. University of Bristol, United Kingdom
  3. University of Oxford, United Kingdom
Short Report
  • Cited 6
  • Views 1,558
  • Annotations
Cite this article as: eLife 2019;8:e47402 doi: 10.7554/eLife.47402

Abstract

The bacterial Sec translocon is a multi-protein complex responsible for translocating diverse proteins across the plasma membrane. For post-translational protein translocation, the Sec-channel - SecYEG - associates with the motor protein SecA to mediate the ATP-dependent transport of pre-proteins across the membrane. Previously, a diffusional based Brownian ratchet mechanism for protein secretion has been proposed [Allen et al. eLife 2016;5:e15598]; the structural dynamics required to facilitate this mechanism remain unknown. We employ hydrogen-deuterium exchange mass spectrometry (HDX-MS) to reveal striking nucleotide-dependent conformational changes in the Sec protein-channel from Escherichia coli. In addition to the ATP-dependent opening of SecY, reported previously, we observe a counteracting, and ATP-dependent, constriction of SecA around the pre-protein. ATP binding causes SecY to open and SecA to close; while, ADP produced by hydrolysis, has the opposite effect. This alternating behaviour could help impose the directionality of the Brownian ratchet for protein transport through the Sec machinery.

Data availability

All data generated or analysed during this study are included in the manuscript and as supplementary figures and tables. Raw HDX-MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE31 partner repository with the dataset identifier: PXD013594.

The following data sets were generated

Article and author information

Author details

  1. Zainab Ahdash

    Department of Chemistry, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4495-8689
  2. Euan Pyle

    Department of Chemistry, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4633-4917
  3. William John Allen

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9513-4786
  4. Robin A Corey

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1820-7993
  5. Ian Collinson

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    ian.collinson@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3931-0503
  6. Argyris Politis

    Department of Chemistry, King's College London, London, United Kingdom
    For correspondence
    argyris.politis@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6658-3224

Funding

Wellcome (109854/Z/15/Z)

  • Argyris Politis

Medical Research Council (MC_PC_15031)

  • Argyris Politis

Biotechnology and Biological Sciences Research Council (BB/N015126/1)

  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/M003604/1)

  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/I008675/1)

  • Ian Collinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Publication history

  1. Received: April 4, 2019
  2. Accepted: July 9, 2019
  3. Accepted Manuscript published: July 10, 2019 (version 1)
  4. Version of Record published: July 18, 2019 (version 2)

Copyright

© 2019, Ahdash et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,558
    Page views
  • 248
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Justin D Lormand et al.
    Research Advance

    RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonucleotidase, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC employs similar structural features that distinguish these two classes as dinucleotidases from other exonucleases, the key determinants for dinucleotidase activity are realized through distinct structural scaffolds. The structures together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases indicates convergent evolution as the mechanism of how dinucleotidase activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinucleotidase activity further underlines the important role these analogous proteins play for cell growth.

    1. Structural Biology and Molecular Biophysics
    Matthias Wälchli et al.
    Research Article

    The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.