Abstract

Androgen receptor (AR) inhibitors represent the mainstay of prostate cancer treatment. In a genome-wide CRISPR-Cas9 screen using LNCaP prostate cancer cells, loss of co-repressor TLE3 conferred resistance to AR antagonists apalutamide and enzalutamide. Genes differentially expressed upon TLE3 loss share AR as the top transcriptional regulator, and TLE3 loss rescued the expression of a subset of androgen-responsive genes upon enzalutamide treatment. GR expression was strongly upregulated upon AR inhibition in a TLE3-negative background. This was consistent with binding of TLE3 and AR at the GR locus. Furthermore, GR binding was observed proximal to TLE3/AR-shared genes. GR inhibition resensitized TLE3KO cells to enzalutamide. Analyses of patient samples revealed an association between TLE3 and GR levels that reflected our findings in LNCaP cells, of which the clinical relevance is yet to be determined. Together, our findings reveal a mechanistic link between TLE3 and GR-mediated resistance to AR inhibitors in human prostate cancer.

Data availability

Data for Figure 1 (CRISPR resistance screen) is provided (source data file for Figure 1).Data for Figure 2 (RNA-seq) have been deposited in GEO under accession code GSE130246.Data (ChIP-seq) for Figure 3 and 4 is publicly available (GSE94682).Data for Figure 5C is the TCGA dataset (publicly available).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sander AL Palit

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    For correspondence
    s.palit@nki.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2487-4311
  2. Daniel Vis

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Suzan Stelloo

    Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Cor Lieftink

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Stefan Prekovic

    Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  6. Elise Bekers

    Division of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  7. Ingrid Hofland

    Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  8. Tonći Šuštić

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  9. Liesanne Wolters

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  10. Roderick Beijersbergen

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  11. Andries M Bergman

    Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  12. Balázs Győrffy

    TTK Cancer Biomarker Research Group, Institute of Enzymology, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
  13. Lodewyk FA Wessels

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  14. Wilbert Zwart

    Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    Wilbert Zwart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9823-7289
  15. Michiel S van der Heijden

    Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
    For correspondence
    ms.vd.heijden@nki.nl
    Competing interests
    No competing interests declared.

Funding

KWF Kankerbestrijding (NKI2014-7080)

  • Michiel S van der Heijden

KWF Kankerbestrijding (NKI2014-7080)

  • Andries M Bergman

KWF Kankerbestrijding (NKI2014-7080)

  • Wilbert Zwart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Palit et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,479
    views
  • 423
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sander AL Palit
  2. Daniel Vis
  3. Suzan Stelloo
  4. Cor Lieftink
  5. Stefan Prekovic
  6. Elise Bekers
  7. Ingrid Hofland
  8. Tonći Šuštić
  9. Liesanne Wolters
  10. Roderick Beijersbergen
  11. Andries M Bergman
  12. Balázs Győrffy
  13. Lodewyk FA Wessels
  14. Wilbert Zwart
  15. Michiel S van der Heijden
(2019)
TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth
eLife 8:e47430.
https://doi.org/10.7554/eLife.47430

Share this article

https://doi.org/10.7554/eLife.47430

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.