TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice

  1. Shuang Liu
  2. Shufeng Wang
  3. Linzhi Zou
  4. Jie Li
  5. Chenmeng Song
  6. Jiaofeng Chen
  7. Qun Hu
  8. Lian Liu
  9. Pingbo Huang
  10. Wei Xiong  Is a corresponding author
  1. Tsinghua University, China
  2. Hong Kong University of Science and Technology, Hong Kong

Abstract

Hearing sensation relies on the mechano-electrical transducer (MET) channel of cochlear hair cells, in which transmembrane channel-like 1 (TMC1) and transmembrane channel-like 2 (TMC2) have been proposed to be the pore-forming subunits in mammals. TMCs were also found to regulate other biological processes than MET in invertebrates ranging from sensations to motor function. However, whether TMCs have a non-MET role remains elusive in mammals. Here, we report that in mouse hair cells, TMC1, but not TMC2, provides a background leak conductance, with properties distinct from those of the MET channels. By cysteine substitutions in TMC1, we characterized 4 amino acids that are required for the leak conductance. The leak conductance is graded in frequency-dependent manner along the length of the cochlea and indispensable for action potential firing. Taken together, our results show that TMC1 confers a background leak conductance in cochlear hair cells, which may be critical for the acquisition of sound-frequency and -intensity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Shuang Liu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shufeng Wang

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Linzhi Zou

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jie Li

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenmeng Song

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiaofeng Chen

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qun Hu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lian Liu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Pingbo Huang

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4560-8760
  10. Wei Xiong

    School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    wei_xiong@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2784-7696

Funding

National Natural Science Foundation of China (31522025)

  • Wei Xiong

Beijing Municipal Science & Technology Commission (Z181100001518001)

  • Wei Xiong

Hong Kong University of Science and Technology (N_HKUST614/18)

  • Pingbo Huang

National Natural Science Foundation of China (31571080)

  • Wei Xiong

National Natural Science Foundation of China (81873703)

  • Wei Xiong

National Natural Science Foundation of China (3181101148)

  • Wei Xiong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental procedures on mice were approved by the Institutional Animal Care and Use Committee of Tsinghua University.(Animal Protocol # : 15 XW1 )

Copyright

© 2019, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuang Liu
  2. Shufeng Wang
  3. Linzhi Zou
  4. Jie Li
  5. Chenmeng Song
  6. Jiaofeng Chen
  7. Qun Hu
  8. Lian Liu
  9. Pingbo Huang
  10. Wei Xiong
(2019)
TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice
eLife 8:e47441.
https://doi.org/10.7554/eLife.47441

Share this article

https://doi.org/10.7554/eLife.47441

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.