TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice

  1. Shuang Liu
  2. Shufeng Wang
  3. Linzhi Zou
  4. Jie Li
  5. Chenmeng Song
  6. Jiaofeng Chen
  7. Qun Hu
  8. Lian Liu
  9. Pingbo Huang
  10. Wei Xiong  Is a corresponding author
  1. Tsinghua University, China
  2. Hong Kong University of Science and Technology, Hong Kong

Abstract

Hearing sensation relies on the mechano-electrical transducer (MET) channel of cochlear hair cells, in which transmembrane channel-like 1 (TMC1) and transmembrane channel-like 2 (TMC2) have been proposed to be the pore-forming subunits in mammals. TMCs were also found to regulate other biological processes than MET in invertebrates ranging from sensations to motor function. However, whether TMCs have a non-MET role remains elusive in mammals. Here, we report that in mouse hair cells, TMC1, but not TMC2, provides a background leak conductance, with properties distinct from those of the MET channels. By cysteine substitutions in TMC1, we characterized 4 amino acids that are required for the leak conductance. The leak conductance is graded in frequency-dependent manner along the length of the cochlea and indispensable for action potential firing. Taken together, our results show that TMC1 confers a background leak conductance in cochlear hair cells, which may be critical for the acquisition of sound-frequency and -intensity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Shuang Liu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shufeng Wang

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Linzhi Zou

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jie Li

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenmeng Song

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiaofeng Chen

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qun Hu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lian Liu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Pingbo Huang

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4560-8760
  10. Wei Xiong

    School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    wei_xiong@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2784-7696

Funding

National Natural Science Foundation of China (31522025)

  • Wei Xiong

Beijing Municipal Science & Technology Commission (Z181100001518001)

  • Wei Xiong

Hong Kong University of Science and Technology (N_HKUST614/18)

  • Pingbo Huang

National Natural Science Foundation of China (31571080)

  • Wei Xiong

National Natural Science Foundation of China (81873703)

  • Wei Xiong

National Natural Science Foundation of China (3181101148)

  • Wei Xiong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dwight E Bergles, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: The experimental procedures on mice were approved by the Institutional Animal Care and Use Committee of Tsinghua University.(Animal Protocol # : 15 XW1 )

Version history

  1. Received: April 5, 2019
  2. Accepted: October 24, 2019
  3. Accepted Manuscript published: October 29, 2019 (version 1)
  4. Version of Record published: November 13, 2019 (version 2)

Copyright

© 2019, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,571
    Page views
  • 430
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuang Liu
  2. Shufeng Wang
  3. Linzhi Zou
  4. Jie Li
  5. Chenmeng Song
  6. Jiaofeng Chen
  7. Qun Hu
  8. Lian Liu
  9. Pingbo Huang
  10. Wei Xiong
(2019)
TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice
eLife 8:e47441.
https://doi.org/10.7554/eLife.47441

Share this article

https://doi.org/10.7554/eLife.47441

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.