TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice

  1. Shuang Liu
  2. Shufeng Wang
  3. Linzhi Zou
  4. Jie Li
  5. Chenmeng Song
  6. Jiaofeng Chen
  7. Qun Hu
  8. Lian Liu
  9. Pingbo Huang
  10. Wei Xiong  Is a corresponding author
  1. Tsinghua University, China
  2. Hong Kong University of Science and Technology, Hong Kong

Abstract

Hearing sensation relies on the mechano-electrical transducer (MET) channel of cochlear hair cells, in which transmembrane channel-like 1 (TMC1) and transmembrane channel-like 2 (TMC2) have been proposed to be the pore-forming subunits in mammals. TMCs were also found to regulate other biological processes than MET in invertebrates ranging from sensations to motor function. However, whether TMCs have a non-MET role remains elusive in mammals. Here, we report that in mouse hair cells, TMC1, but not TMC2, provides a background leak conductance, with properties distinct from those of the MET channels. By cysteine substitutions in TMC1, we characterized 4 amino acids that are required for the leak conductance. The leak conductance is graded in frequency-dependent manner along the length of the cochlea and indispensable for action potential firing. Taken together, our results show that TMC1 confers a background leak conductance in cochlear hair cells, which may be critical for the acquisition of sound-frequency and -intensity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Shuang Liu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shufeng Wang

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Linzhi Zou

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jie Li

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenmeng Song

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiaofeng Chen

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qun Hu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lian Liu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Pingbo Huang

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4560-8760
  10. Wei Xiong

    School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    wei_xiong@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2784-7696

Funding

National Natural Science Foundation of China (31522025)

  • Wei Xiong

Beijing Municipal Science & Technology Commission (Z181100001518001)

  • Wei Xiong

Hong Kong University of Science and Technology (N_HKUST614/18)

  • Pingbo Huang

National Natural Science Foundation of China (31571080)

  • Wei Xiong

National Natural Science Foundation of China (81873703)

  • Wei Xiong

National Natural Science Foundation of China (3181101148)

  • Wei Xiong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dwight E Bergles, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: The experimental procedures on mice were approved by the Institutional Animal Care and Use Committee of Tsinghua University.(Animal Protocol # : 15 XW1 )

Version history

  1. Received: April 5, 2019
  2. Accepted: October 24, 2019
  3. Accepted Manuscript published: October 29, 2019 (version 1)
  4. Version of Record published: November 13, 2019 (version 2)

Copyright

© 2019, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,629
    views
  • 440
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuang Liu
  2. Shufeng Wang
  3. Linzhi Zou
  4. Jie Li
  5. Chenmeng Song
  6. Jiaofeng Chen
  7. Qun Hu
  8. Lian Liu
  9. Pingbo Huang
  10. Wei Xiong
(2019)
TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice
eLife 8:e47441.
https://doi.org/10.7554/eLife.47441

Share this article

https://doi.org/10.7554/eLife.47441

Further reading

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including a-synuclein (aSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1,200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble aSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.

    1. Cell Biology
    Yuhao Wang, Linhao Ruan ... Rong Li
    Research Article

    Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the ‘mitochondria as guardian in cytosol’ (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in Saccharomyces cerevisiae uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.