1. Neuroscience
Download icon

One-shot learning and behavioral eligibility traces in sequential decision making

  1. Marco P Lehmann  Is a corresponding author
  2. He A Xu
  3. Vasiliki Liakoni
  4. Michael H Herzog
  5. Wulfram Gerstner
  6. Kerstin Preuschoff
  1. École Polytechnique Fédérale de Lausanne, Switzerland
  2. University of Geneva, Switzerland
Research Article
  • Cited 0
  • Views 1,580
  • Annotations
Cite this article as: eLife 2019;8:e47463 doi: 10.7554/eLife.47463

Abstract

In many daily tasks we make multiple decisions before reaching a goal. In order to learn such sequences of decisions, a mechanism to link earlier actions to later reward is necessary. Reinforcement learning theory suggests two classes of algorithms solving this credit assignment problem: In classic temporal-difference learning, earlier actions receive reward information only after multiple repetitions of the task, whereas models with eligibility traces reinforce entire sequences of actions from a single experience (one-shot). Here we show one-shot learning of sequences. We developed a novel paradigm to directly observe which actions and states along a multi-step sequence are reinforced after a single reward. By focusing our analysis on those states for which RL with and without eligibility trace make qualitatively distinct predictions, we find direct behavioral (choice probability) and physiological (pupil dilation) signatures of reinforcement learning with eligibility trace across multiple sensory modalities.

Article and author information

Author details

  1. Marco P Lehmann

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    marco.lehmann@alumni.epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5274-144X
  2. He A Xu

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Vasiliki Liakoni

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael H Herzog

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Wulfram Gerstner

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Kerstin Preuschoff

    Swiss Center for Affective Sciences, University of Geneva, Genève, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII2 147636 (Sinergia))

  • Marco P Lehmann
  • He A Xu
  • Vasiliki Liakoni
  • Michael H Herzog
  • Wulfram Gerstner
  • Kerstin Preuschoff

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII2 200020 165538)

  • Marco P Lehmann
  • Vasiliki Liakoni
  • Wulfram Gerstner

Horizon 2020 Framework Programme (Human Brain Project (SGA2) 785907)

  • Michael H Herzog
  • Wulfram Gerstner

H2020 European Research Council (268 689 MultiRules)

  • Wulfram Gerstner

Horizon 2020 Framework Programme (Human Brain Project (SGA1) 720270)

  • Michael H Herzog
  • Wulfram Gerstner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Experiments were conducted in accordance with the Helsinki declaration and approved by the ethics commission of the Canton de Vaud (164/14 Titre: Aspects fondamentaux de la reconnaissance des objets : protocole général). All participants were informed about the general purpose of the experiment and provided written, informed consent. They were told that they could quit the experiment at any time they wish.

Reviewing Editor

  1. Thorsten Kahnt, Northwestern University, United States

Publication history

  1. Received: April 5, 2019
  2. Accepted: November 1, 2019
  3. Accepted Manuscript published: November 11, 2019 (version 1)
  4. Version of Record published: December 6, 2019 (version 2)

Copyright

© 2019, Lehmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,580
    Page views
  • 264
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Amanda M Pocratsky et al.
    Research Article Updated

    Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.

    1. Neuroscience
    Sven Dannhäuser et al.
    Research Advance

    Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.