Tight nuclear tethering of cGAS is essential for preventing autoreactivity

  1. Hannah E Volkman
  2. Stephanie Cambier
  3. Elizabeth E Gray
  4. Daniel B Stetson  Is a corresponding author
  1. University of Washington, United States

Abstract

cGAS is an intracellular innate immune sensor that detects double-stranded DNA. The presence of billions of base pairs of genomic DNA in all nucleated cells raises the question of how cGAS is not constitutively activated. A widely accepted explanation for this is the sequestration of cGAS in the cytosol, which is thought to prevent cGAS from accessing nuclear DNA. Here, we demonstrate that endogenous cGAS is predominantly a nuclear protein, regardless of cell cycle phase or cGAS activation status. We show that nuclear cGAS is tethered tightly by a salt-resistant interaction. This tight tethering is independent of the domains required for cGAS activation, and it requires intact nuclear chromatin. We identify the evolutionarily conserved tethering surface on cGAS and we show that mutation of single amino acids within this surface renders cGAS massively and constitutively active against self-DNA. Thus, tight nuclear tethering maintains the resting state of cGAS and prevents autoreactivity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hannah E Volkman

    Department of Immunology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephanie Cambier

    Department of Immunology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizabeth E Gray

    Department of Immunology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel B Stetson

    Department of Immunology, University of Washington, Seattle, United States
    For correspondence
    stetson@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5936-1113

Funding

National Institutes of Health (AI084914)

  • Daniel B Stetson

Jane Coffin Childs Memorial Fund for Medical Research

  • Hannah E Volkman

Burroughs Wellcome Fund (1013540)

  • Daniel B Stetson

Howard Hughes Medical Institute (55108572)

  • Daniel B Stetson

Bill and Melinda Gates Foundation (OPP1156262)

  • Daniel B Stetson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tadatsugu Taniguchi, Institute of Industrial Science, The University of Tokyo, Japan

Version history

  1. Received: December 3, 2018
  2. Accepted: December 5, 2019
  3. Accepted Manuscript published: December 6, 2019 (version 1)
  4. Version of Record published: December 23, 2019 (version 2)

Copyright

© 2019, Volkman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,682
    views
  • 1,592
    downloads
  • 194
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannah E Volkman
  2. Stephanie Cambier
  3. Elizabeth E Gray
  4. Daniel B Stetson
(2019)
Tight nuclear tethering of cGAS is essential for preventing autoreactivity
eLife 8:e47491.
https://doi.org/10.7554/eLife.47491

Share this article

https://doi.org/10.7554/eLife.47491

Further reading

    1. Immunology and Inflammation
    Thomas Morgan Li, Victoria Zyulina ... Theresa T Lu
    Research Article Updated

    The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.

    1. Immunology and Inflammation
    Xiaochan Xu, Bjarke Frost Nielsen, Kim Sneppen
    Research Article

    SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.