Transverse tubule remodeling enhances Orai1-dependent Ca2+ entry in skeletal muscle

  1. Antonio Michelucci
  2. Simona Boncompagni
  3. Laura Pietrangelo
  4. Maricela García-Castañeda
  5. Takahiro Takano
  6. Sundeep Malik
  7. Robert T Dirksen  Is a corresponding author
  8. Feliciano Protasi
  1. University of Rochester School of Medicine and Dentistry, United States
  2. University G d' Annunzio of Chieti, Italy

Abstract

Exercise promotes the formation of intracellular junctions in skeletal muscle between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of transverse-tubules (TT) that increase co-localization of proteins required for store-operated Ca2+ entry (SOCE). Here we report that SOCE, peak Ca2+ transient amplitude and muscle force production during repetitive stimulation are increased after exercise in parallel with the time course of TT association with SR-stacks. Unexpectedly, exercise also activated constitutive Ca2+ entry coincident with a modest decrease in total releasable Ca2+ store content. Importantly, this decrease in releasable Ca2+ store content observed after exercise was reversed by repetitive high-frequency stimulation, consistent with enhanced SOCE. The functional benefits of exercise on SOCE, constitutive Ca2+ entry and muscle force production were lost in mice with muscle-specific loss of Orai1 function. These results indicate that TT association with SR-stacks enhances Orai1-dependent SOCE to optimize Ca2+ dynamics and muscle contractile function during acute exercise.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Antonio Michelucci

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Simona Boncompagni

    CeSI-MeT, Center for Research on Ageing and Translational Medicine, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5308-5069
  3. Laura Pietrangelo

    CeSI-MeT, Center for Research on Ageing and Translational Medicine, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Maricela García-Castañeda

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Takahiro Takano

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sundeep Malik

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert T Dirksen

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    For correspondence
    robert_dirksen@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3182-1755
  8. Feliciano Protasi

    CeSI-MeT, Center for Research on Ageing and Translational Medicine, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (AR059646)

  • Robert T Dirksen
  • Feliciano Protasi

Italian Ministry of Education, University and Research (PRIN #2015ZZR4W3)

  • Feliciano Protasi

Alfred and Eleanor Wedd Fund

  • Antonio Michelucci

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Ethics

Animal experimentation: All animal studies were designed to minimize animal suffering and were approved by the local University Committee on Animal Resources and Animal Ethical Committees at the University of Chieti and the University of Rochester, respectively.(UCAR-2006-114E).

Version history

  1. Received: April 10, 2019
  2. Accepted: October 24, 2019
  3. Accepted Manuscript published: October 28, 2019 (version 1)
  4. Version of Record published: November 7, 2019 (version 2)
  5. Version of Record updated: November 18, 2019 (version 3)

Copyright

© 2019, Michelucci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,299
    Page views
  • 246
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Michelucci
  2. Simona Boncompagni
  3. Laura Pietrangelo
  4. Maricela García-Castañeda
  5. Takahiro Takano
  6. Sundeep Malik
  7. Robert T Dirksen
  8. Feliciano Protasi
(2019)
Transverse tubule remodeling enhances Orai1-dependent Ca2+ entry in skeletal muscle
eLife 8:e47576.
https://doi.org/10.7554/eLife.47576

Share this article

https://doi.org/10.7554/eLife.47576

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.