Transverse tubule remodeling enhances Orai1-dependent Ca2+ entry in skeletal muscle

  1. Antonio Michelucci
  2. Simona Boncompagni
  3. Laura Pietrangelo
  4. Maricela García-Castañeda
  5. Takahiro Takano
  6. Sundeep Malik
  7. Robert T Dirksen  Is a corresponding author
  8. Feliciano Protasi
  1. University of Rochester School of Medicine and Dentistry, United States
  2. University G d' Annunzio of Chieti, Italy

Abstract

Exercise promotes the formation of intracellular junctions in skeletal muscle between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of transverse-tubules (TT) that increase co-localization of proteins required for store-operated Ca2+ entry (SOCE). Here we report that SOCE, peak Ca2+ transient amplitude and muscle force production during repetitive stimulation are increased after exercise in parallel with the time course of TT association with SR-stacks. Unexpectedly, exercise also activated constitutive Ca2+ entry coincident with a modest decrease in total releasable Ca2+ store content. Importantly, this decrease in releasable Ca2+ store content observed after exercise was reversed by repetitive high-frequency stimulation, consistent with enhanced SOCE. The functional benefits of exercise on SOCE, constitutive Ca2+ entry and muscle force production were lost in mice with muscle-specific loss of Orai1 function. These results indicate that TT association with SR-stacks enhances Orai1-dependent SOCE to optimize Ca2+ dynamics and muscle contractile function during acute exercise.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Antonio Michelucci

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Simona Boncompagni

    CeSI-MeT, Center for Research on Ageing and Translational Medicine, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5308-5069
  3. Laura Pietrangelo

    CeSI-MeT, Center for Research on Ageing and Translational Medicine, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Maricela García-Castañeda

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Takahiro Takano

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sundeep Malik

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert T Dirksen

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    For correspondence
    robert_dirksen@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3182-1755
  8. Feliciano Protasi

    CeSI-MeT, Center for Research on Ageing and Translational Medicine, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (AR059646)

  • Robert T Dirksen
  • Feliciano Protasi

Italian Ministry of Education, University and Research (PRIN #2015ZZR4W3)

  • Feliciano Protasi

Alfred and Eleanor Wedd Fund

  • Antonio Michelucci

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were designed to minimize animal suffering and were approved by the local University Committee on Animal Resources and Animal Ethical Committees at the University of Chieti and the University of Rochester, respectively.(UCAR-2006-114E).

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Version history

  1. Received: April 10, 2019
  2. Accepted: October 24, 2019
  3. Accepted Manuscript published: October 28, 2019 (version 1)
  4. Version of Record published: November 7, 2019 (version 2)
  5. Version of Record updated: November 18, 2019 (version 3)

Copyright

© 2019, Michelucci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,233
    Page views
  • 240
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Michelucci
  2. Simona Boncompagni
  3. Laura Pietrangelo
  4. Maricela García-Castañeda
  5. Takahiro Takano
  6. Sundeep Malik
  7. Robert T Dirksen
  8. Feliciano Protasi
(2019)
Transverse tubule remodeling enhances Orai1-dependent Ca2+ entry in skeletal muscle
eLife 8:e47576.
https://doi.org/10.7554/eLife.47576

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Maria Körner, Susanne R Meyer ... Alexander Buchberger
    Research Article Updated

    The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97–cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.

    1. Cell Biology
    2. Neuroscience
    Elisabeth Jongsma, Anita Goyala ... Collin Yvès Ewald
    Research Article Updated

    The amyloid beta (Aβ) plaques found in Alzheimer’s disease (AD) patients’ brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.