Local human movement patterns and land use impact exposure to zoonotic malaria in Malaysian Borneo

  1. Kimberly M Fornace  Is a corresponding author
  2. Neal Alexander
  3. Tommy R Abidin
  4. Paddy M Brock
  5. Tock H Chua
  6. Indra Vythilingam
  7. Heather M Ferguson
  8. Benny O Manin
  9. Meng L Wong
  10. Sui H Ng
  11. Jon Cox
  12. Chris Drakeley
  1. London School of Hygiene and Tropical Medicine, United Kingdom
  2. Universiti Malaysia Sabah, Malaysia
  3. University of Glasgow, United Kingdom
  4. University of Malaya, Malaysia

Abstract

Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.

Data availability

Data on human subjects is not available due to ethical restrictions around sharing identifiable information. All other data is publicly available with relevant links or publications included. Code to reproduce this analysis is available on GitHub or as supplementary information.

The following previously published data sets were used

Article and author information

Author details

  1. Kimberly M Fornace

    Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    For correspondence
    Kimberly.Fornace@lshtm.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5484-241X
  2. Neal Alexander

    Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Tommy R Abidin

    Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  4. Paddy M Brock

    Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tock H Chua

    Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8984-8723
  6. Indra Vythilingam

    Parasitology Department, University of Malaya, Kuala Lumpur, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  7. Heather M Ferguson

    Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Benny O Manin

    Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-6146
  9. Meng L Wong

    Parasitology Department, University of Malaya, Kuala Lumpur, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  10. Sui H Ng

    Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  11. Jon Cox

    Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Chris Drakeley

    Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4863-075X

Funding

Medical Research Council (G1100796)

  • Kimberly M Fornace
  • Neal Alexander
  • Tommy R Abidin
  • Paddy M Brock
  • Tock H Chua
  • Indra Vythilingam
  • Heather M Ferguson
  • Benny O Manin
  • Meng L Wong
  • Sui H Ng
  • Jon Cox
  • Chris Drakeley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the Medical Research Sub-Committee of the Malaysian Ministry of Health (NMRR-12-537-12568) and the Research Ethics Committee of the London School of Hygiene and Tropical Medicine (6531). Written informed consent was obtained from all participants or parents or guardians and assent obtained from children under 18.

Reviewing Editor

  1. Ben Cooper, Mahidol Oxford Tropical Medicine Research Unit, Thailand

Publication history

  1. Received: April 10, 2019
  2. Accepted: October 15, 2019
  3. Accepted Manuscript published: October 22, 2019 (version 1)
  4. Version of Record published: October 25, 2019 (version 2)

Copyright

© 2019, Fornace et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,599
    Page views
  • 245
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kimberly M Fornace
  2. Neal Alexander
  3. Tommy R Abidin
  4. Paddy M Brock
  5. Tock H Chua
  6. Indra Vythilingam
  7. Heather M Ferguson
  8. Benny O Manin
  9. Meng L Wong
  10. Sui H Ng
  11. Jon Cox
  12. Chris Drakeley
(2019)
Local human movement patterns and land use impact exposure to zoonotic malaria in Malaysian Borneo
eLife 8:e47602.
https://doi.org/10.7554/eLife.47602

Further reading

    1. Epidemiology and Global Health
    Catherine Meh, Prabhat Jha
    Research Article

    Preference for sons and smaller families and, in the case of China, a one-child policy, have contributed to missing girl births in India and China over the last few decades due to sex-selective abortions. Selective abortion occurs also among Indian and Chinese diaspora, but their variability and trends over time are unknown. We examined conditional sex ratio (CSR) of girl births per 1000 boy births among second or third births following earlier daughters or sons in India, China, and their diaspora in Australia, Canada, United Kingdom (UK), and United States (US) drawing upon 18.4 million birth records from census and nationally representative surveys from 1999 to 2019. Among Indian women, the CSR in 2016 for second births following a first daughter favoured boys in India (866), similar to those in diaspora in Australia (888) and Canada (882). For third births following two earlier daughters in 2016, CSRs favoured sons in Canada (520) and Australia (653) even more than in India (769). Among women in China outside the one-child restriction, CSRs in 2015 for second order births somewhat favoured more girls after a first son (1154) but more heavily favoured boys after a first daughter (561). Third-birth CSRs generally fell over time among diaspora, except among Chinese diaspora in the UK and US. In the UK, third-birth CSRs fell among Indian but not among other South Asian diasporas. Selective abortion of girls is notable among Indian diaspora, particularly at higher-order births.

    1. Epidemiology and Global Health
    Yupeng Liu, Siyu Le ... Shuran Wang
    Research Article

    Background:

    The effect of calcium supplementation on bone mineral accretion in people under 35 years old is inconclusive. To comprehensively summarize the evidence for the effect of calcium supplementation on bone mineral accretion in young populations (≤35 years).

    Methods:

    This is a systematic review and meta-analysis. The Pubmed, Embase, ProQuest, CENTRAL, WHO Global Index Medicus, Clinical Trials.gov, WHO ICTRP, China National Knowledge Infrastructure (CNKI), and Wanfang Data databases were systematically searched from database inception to April 25, 2021. Randomized clinical trials assessing the effects of calcium supplementation on bone mineral density (BMD) or bone mineral content (BMC) in people under 35 years old.

    Results:

    This systematic review and meta-analysis identified 43 studies involving 7,382 subjects. Moderate certainty of evidence showed that calcium supplementation was associated with the accretion of BMD and BMC, especially on femoral neck (standardized mean difference [SMD] 0.627, 95% confidence interval [CI] 0.338–0.915; SMD 0.364, 95% CI 0.134–0.595; respectively) and total body (SMD 0.330, 95% CI 0.163–0.496; SMD 0.149, 95% CI 0.006–0.291), also with a slight improvement effect on lumbar spine BMC (SMD 0.163, 95% CI 0.008–0.317), no effects on total hip BMD and BMC and lumbar spine BMD were observed. Very interestingly, subgroup analyses suggested that the improvement of bone at femoral neck was more pronounced in the peripeak bone mass (PBM) population (20–35 years) than the pre-PBM population (<20 years).

    Conclusions:

    Our findings provided novel insights and evidence in calcium supplementation, which showed that calcium supplementation significantly improves bone mass, implying that preventive calcium supplementation before or around achieving PBM may be a shift in the window of intervention for osteoporosis.

    Funding:

    This work was supported by Wenzhou Medical University grant [89219029].