Spatiotemporal control of mitotic exit during anaphase by an Aurora B-Cdk1 crosstalk

  1. Olga Afonso
  2. Colleen M Castellani
  3. Liam P Cheeseman
  4. Jorge G Ferreira
  5. Bernardo Orr
  6. Luisa T Ferreira
  7. James J Chambers
  8. Eurico Morais-de-Sá
  9. Thomas J Maresca
  10. Helder Maiato  Is a corresponding author
  1. i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
  2. University of Massachusetts, United States

Abstract

According to the prevailing 'clock' model, chromosome decondensation and nuclear envelope reformation when cells exit mitosis are byproducts of Cdk1 inactivation at the metaphase-anaphase transition, controlled by the spindle assembly checkpoint. However, mitotic exit was recently shown to be a function of chromosome separation during anaphase, assisted by a midzone Aurora B phosphorylation gradient - the 'ruler' model. Here we found that Cdk1 remains active during anaphase due to ongoing APC/CCdc20- and APC/CCdh1-mediated degradation of B-type Cyclins in Drosophila and human cells. Failure to degrade B-type Cyclins during anaphase prevented mitotic exit in a Cdk1-dependent manner. Cyclin B1-Cdk1 localized at the spindle midzone in an Aurora B-dependent manner, with incompletely separated chromosomes showing the highest Cdk1 activity. Slowing down anaphase chromosome motion delayed Cyclin B1 degradation and mitotic exit in an Aurora B-dependent manner. Thus, a crosstalk between molecular 'rulers' and 'clocks' licenses mitotic exit only after proper chromosome separation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Olga Afonso

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Colleen M Castellani

    Biology Department, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Liam P Cheeseman

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Jorge G Ferreira

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernardo Orr

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Luisa T Ferreira

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. James J Chambers

    Institute for Applied Life Sciences,, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eurico Morais-de-Sá

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas J Maresca

    Biology Department, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2214-8674
  10. Helder Maiato

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    maiato@i3s.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6200-9997

Funding

European Reseach Council (681443)

  • Helder Maiato

Fundação Luso-Americana (FLAD LifeScience2020)

  • Helder Maiato

Marie Skłodowska-Curie Action (746515)

  • Liam P Cheeseman

Fundação para a Ciência e a Tecnologia (PTDC/BEX-BCM/0432/2014)

  • Eurico Morais-de-Sá

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained in a specific pathogen-free environment according to the Portuguese animal welfare authority regulations (Direcção Geral de Alimentação e Veterinária; reference# 0421/000/000/2016) and the guidelines of the Instituto de Investigação e Inovação em Saúde animal facility.

Copyright

© 2019, Afonso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,152
    views
  • 673
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Afonso
  2. Colleen M Castellani
  3. Liam P Cheeseman
  4. Jorge G Ferreira
  5. Bernardo Orr
  6. Luisa T Ferreira
  7. James J Chambers
  8. Eurico Morais-de-Sá
  9. Thomas J Maresca
  10. Helder Maiato
(2019)
Spatiotemporal control of mitotic exit during anaphase by an Aurora B-Cdk1 crosstalk
eLife 8:e47646.
https://doi.org/10.7554/eLife.47646

Share this article

https://doi.org/10.7554/eLife.47646

Further reading

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.

    1. Cell Biology
    Wonjo Jang, Kanishka Senarath ... Nevin A Lambert
    Tools and Resources

    Classical G-protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap, we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20–30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial-trans Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.