Origin and role of the cerebrospinal fluid bidirectional flow in the central canal

  1. Olivier Thouvenin
  2. Ludovic Keiser
  3. Yasmine Cantaut-Belarif1
  4. Martin Carbo-Tano
  5. Frederik Verweij
  6. Nathalie Jurisch-Yaksi
  7. Pierre-Luc Bardet
  8. Guillaume van Niel
  9. Francois Gallaire  Is a corresponding author
  10. Claire Wyart  Is a corresponding author
  1. Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France
  2. École Polytechnique Fédérale de Lausanne, Switzerland
  3. Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266, France
  4. Norwegian University of Science and Technology, Norway

Abstract

Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.

Data availability

The data enabling to plot all graphs for figures and supplemental videos have been deposited to the Dryad Digital Repository doi:10.5061/dryad.4mj3pv1.The full MATLAB script can be found on Github https://github.com/wyartlab/eLife_2019_OriginAndRole

The following data sets were generated

Article and author information

Author details

  1. Olivier Thouvenin

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  2. Ludovic Keiser

    Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  3. Yasmine Cantaut-Belarif1

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  4. Martin Carbo-Tano

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  5. Frederik Verweij

    Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266, Paris, France
    Competing interests
    No competing interests declared.
  6. Nathalie Jurisch-Yaksi

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8767-6120
  7. Pierre-Luc Bardet

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  8. Guillaume van Niel

    Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266, Paris, France
    Competing interests
    No competing interests declared.
  9. Francois Gallaire

    Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    francois.gallaire@epfl.ch
    Competing interests
    No competing interests declared.
  10. Claire Wyart

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975

Funding

Human Frontier Science Program (RGP00063/2018)

  • Francois Gallaire
  • Claire Wyart

NIH Blueprint for Neuroscience Research (U19NS104653)

  • Martin Carbo-Tano
  • Claire Wyart

European Research Council (311673)

  • Yasmine Cantaut-Belarif1
  • Martin Carbo-Tano
  • Claire Wyart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed on zebrafish embryos before 2 days post fertilization in accordance with the European Communities Council Directive (2010/63/EU) and French law (87/848) and approved by the Brain and Spine Institute (Institut du Cerveau et de la Moelle épinière).

Reviewing Editor

  1. Julien Vermot, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Publication history

  1. Received: April 15, 2019
  2. Accepted: January 7, 2020
  3. Accepted Manuscript published: January 9, 2020 (version 1)
  4. Version of Record published: January 29, 2020 (version 2)

Copyright

© 2020, Thouvenin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,824
    Page views
  • 479
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olivier Thouvenin
  2. Ludovic Keiser
  3. Yasmine Cantaut-Belarif1
  4. Martin Carbo-Tano
  5. Frederik Verweij
  6. Nathalie Jurisch-Yaksi
  7. Pierre-Luc Bardet
  8. Guillaume van Niel
  9. Francois Gallaire
  10. Claire Wyart
(2020)
Origin and role of the cerebrospinal fluid bidirectional flow in the central canal
eLife 9:e47699.
https://doi.org/10.7554/eLife.47699
  1. Further reading

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Sabrina A Jones, Jacob H Barfield ... Woodrow L Shew
    Research Article

    Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here we show that scale-free dynamics of mouse behavior and neurons in visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.

    1. Cell Biology
    2. Physics of Living Systems
    Christa Ringers, Stephan Bialonski ... Nathalie Jurisch-Yaksi
    Research Article

    Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.