1. Physics of Living Systems
Download icon

Origin and role of the cerebrospinal fluid bidirectional flow in the central canal

  1. Olivier Thouvenin
  2. Ludovic Keiser
  3. Yasmine Cantaut-Belarif1
  4. Martin Carbo-Tano
  5. Frederik Verweij
  6. Nathalie Jurisch-Yaksi
  7. Pierre-Luc Bardet
  8. Guillaume van Niel
  9. Francois Gallaire  Is a corresponding author
  10. Claire Wyart  Is a corresponding author
  1. Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France
  2. École Polytechnique Fédérale de Lausanne, Switzerland
  3. Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266, France
  4. Norwegian University of Science and Technology, Norway
Research Article
  • Cited 6
  • Views 1,603
  • Annotations
Cite this article as: eLife 2020;9:e47699 doi: 10.7554/eLife.47699

Abstract

Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.

Article and author information

Author details

  1. Olivier Thouvenin

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  2. Ludovic Keiser

    Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  3. Yasmine Cantaut-Belarif1

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  4. Martin Carbo-Tano

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  5. Frederik Verweij

    Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266, Paris, France
    Competing interests
    No competing interests declared.
  6. Nathalie Jurisch-Yaksi

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8767-6120
  7. Pierre-Luc Bardet

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  8. Guillaume van Niel

    Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266, Paris, France
    Competing interests
    No competing interests declared.
  9. Francois Gallaire

    Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    francois.gallaire@epfl.ch
    Competing interests
    No competing interests declared.
  10. Claire Wyart

    Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975

Funding

Human Frontier Science Program (RGP00063/2018)

  • Francois Gallaire
  • Claire Wyart

NIH Blueprint for Neuroscience Research (U19NS104653)

  • Martin Carbo-Tano
  • Claire Wyart

European Research Council (311673)

  • Yasmine Cantaut-Belarif1
  • Martin Carbo-Tano
  • Claire Wyart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed on zebrafish embryos before 2 days post fertilization in accordance with the European Communities Council Directive (2010/63/EU) and French law (87/848) and approved by the Brain and Spine Institute (Institut du Cerveau et de la Moelle épinière).

Reviewing Editor

  1. Julien Vermot, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Publication history

  1. Received: April 15, 2019
  2. Accepted: January 7, 2020
  3. Accepted Manuscript published: January 9, 2020 (version 1)
  4. Version of Record published: January 29, 2020 (version 2)

Copyright

© 2020, Thouvenin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,603
    Page views
  • 275
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Physics of Living Systems
    William T Ireland et al.
    Research Article Updated

    Advances in DNA sequencing have revolutionized our ability to read genomes. However, even in the most well-studied of organisms, the bacterium Escherichia coli, for ≈65% of promoters we remain ignorant of their regulation. Until we crack this regulatory Rosetta Stone, efforts to read and write genomes will remain haphazard. We introduce a new method, Reg-Seq, that links massively parallel reporter assays with mass spectrometry to produce a base pair resolution dissection of more than a E. coli promoters in 12 growth conditions. We demonstrate that the method recapitulates known regulatory information. Then, we examine regulatory architectures for more than 80 promoters which previously had no known regulatory information. In many cases, we also identify which transcription factors mediate their regulation. This method clears a path for highly multiplexed investigations of the regulatory genome of model organisms, with the potential of moving to an array of microbes of ecological and medical relevance.

    1. Physics of Living Systems
    Sean Fancher, Andrew Mugler
    Research Article

    Morphogen profiles allow cells to determine their position within a developing organism, but not all morphogen profiles form by the same mechanism. Here we derive fundamental limits to the precision of morphogen concentration sensing for two canonical mechanisms: the diffusion of morphogen through extracellular space and the direct transport of morphogen from source cell to target cell, e.g., via cytonemes. We find that direct transport establishes a morphogen profile without adding noise in the process. Despite this advantage, we find that for sufficiently large values of profile length, the diffusion mechanism is many times more precise due to a higher refresh rate of morphogen molecules. We predict a profile lengthscale below which direct transport is more precise, and above which diffusion is more precise. This prediction is supported by data from a wide variety of morphogens in developing Drosophila and zebrafish.