Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander Disease severity

  1. Rachel A Battaglia
  2. Adriana S Beltran
  3. Samed Delic
  4. Raluca Dumitru
  5. Jasmine A Robinson
  6. Parijat Kabiraj
  7. Laura E Herring
  8. Victoria J Madden
  9. Namritha Ravinder
  10. Erik Willems
  11. Rhonda A Newman
  12. Roy Andrew Quinlan
  13. James E Goldman
  14. Ming-Der Perng
  15. Masaki Inagaki
  16. Natasha T Snider  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. Thermo Fisher Scientific, United States
  3. Durham University, United Kingdom
  4. Columbia University, United States
  5. National Tsing Hua University, Taiwan, Republic of China
  6. Mie University Graduate School of Medicine, Japan

Abstract

Alexander Disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations in infantile AxD.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for mass spec results in Figure 1 and Supplemental Figure 6.

Article and author information

Author details

  1. Rachel A Battaglia

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  2. Adriana S Beltran

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  3. Samed Delic

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  4. Raluca Dumitru

    Human Pluripotent Stem Cell Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  5. Jasmine A Robinson

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  6. Parijat Kabiraj

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  7. Laura E Herring

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  8. Victoria J Madden

    Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7909-7743
  9. Namritha Ravinder

    Thermo Fisher Scientific, Carlsbad, United States
    Competing interests
    Namritha Ravinder, is a paid employee of ThermoFisher Scientific, whose products were used to complete parts of the study.
  10. Erik Willems

    Thermo Fisher Scientific, Carlsbad, United States
    Competing interests
    Erik Willems, is a paid employee of ThermoFisher Scientific, whose products were used to complete parts of the study.
  11. Rhonda A Newman

    Thermo Fisher Scientific, Carlsbad, United States
    Competing interests
    Rhonda A Newman, is a paid employee of ThermoFisher Scientific, whose products were used to complete parts of the study. ThermoFisher Scientific had no role in the study design, data analysis, decision to publish, or preparation of the manuscript.
  12. Roy Andrew Quinlan

    Department of Biosciences, Durham University, Durham, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0644-4123
  13. James E Goldman

    Department of Pathology, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  14. Ming-Der Perng

    Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
    Competing interests
    No competing interests declared.
  15. Masaki Inagaki

    Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
    Competing interests
    No competing interests declared.
  16. Natasha T Snider

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    ntsnider@med.unc.edu
    Competing interests
    Natasha T Snider, is a member of the Scientific Advisory Board for Elise's Corner Fund, which supported part of this work.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7663-4585

Funding

Elise's Corner Fund (Research Grant)

  • Natasha T Snider

United Leukodystrophy Foundation (Research Grant)

  • Natasha T Snider

National Science Foundation (Graduate Research Fellowship)

  • Rachel A Battaglia

University of North Carolina at Chapel Hill (Department of Cell Biology and Physiology)

  • Natasha T Snider

National Institutes of Health (P30 CA016086)

  • Victoria J Madden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Version history

  1. Received: April 18, 2019
  2. Accepted: November 4, 2019
  3. Accepted Manuscript published: November 4, 2019 (version 1)
  4. Version of Record published: December 23, 2019 (version 2)

Copyright

© 2019, Battaglia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,410
    views
  • 473
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Battaglia
  2. Adriana S Beltran
  3. Samed Delic
  4. Raluca Dumitru
  5. Jasmine A Robinson
  6. Parijat Kabiraj
  7. Laura E Herring
  8. Victoria J Madden
  9. Namritha Ravinder
  10. Erik Willems
  11. Rhonda A Newman
  12. Roy Andrew Quinlan
  13. James E Goldman
  14. Ming-Der Perng
  15. Masaki Inagaki
  16. Natasha T Snider
(2019)
Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander Disease severity
eLife 8:e47789.
https://doi.org/10.7554/eLife.47789

Share this article

https://doi.org/10.7554/eLife.47789

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.