Abstract

Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from on-going translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyper-stress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.

Data availability

Sequencing data have been deposited in GEO under accession code GSE78136.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anna E Masser

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenjing Kang

    Science for Life Laboratory, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Joydeep Roy

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jayasankar M Kaimal

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Jany Quintana-Cordero

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc R Friedländer

    Science for Life Laboratory, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Claes Andréasson

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    For correspondence
    claes.andreasson@su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8948-0685

Funding

The Swedish Cancer Society (CAN2018/711)

  • Claes Andréasson

The Swedish Cancer Society (CAN2016/361)

  • Claes Andréasson

Swedish Research Council (2015-05094)

  • Claes Andréasson

Knut och Alice Wallenbergs Stiftelse (2017)

  • Claes Andréasson

European Research Council (Starting Grant 758397)

  • Marc R Friedländer

Swedish Research Council (2015-04611)

  • Marc R Friedländer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Masser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,339
    views
  • 741
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna E Masser
  2. Wenjing Kang
  3. Joydeep Roy
  4. Jayasankar M Kaimal
  5. Jany Quintana-Cordero
  6. Marc R Friedländer
  7. Claes Andréasson
(2019)
Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1
eLife 8:e47791.
https://doi.org/10.7554/eLife.47791

Share this article

https://doi.org/10.7554/eLife.47791

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.