Abstract

Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from on-going translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyper-stress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.

Data availability

Sequencing data have been deposited in GEO under accession code GSE78136.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anna E Masser

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenjing Kang

    Science for Life Laboratory, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Joydeep Roy

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jayasankar M Kaimal

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Jany Quintana-Cordero

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc R Friedländer

    Science for Life Laboratory, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Claes Andréasson

    Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
    For correspondence
    claes.andreasson@su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8948-0685

Funding

The Swedish Cancer Society (CAN2018/711)

  • Claes Andréasson

The Swedish Cancer Society (CAN2016/361)

  • Claes Andréasson

Swedish Research Council (2015-05094)

  • Claes Andréasson

Knut och Alice Wallenbergs Stiftelse (2017)

  • Claes Andréasson

European Research Council (Starting Grant 758397)

  • Marc R Friedländer

Swedish Research Council (2015-04611)

  • Marc R Friedländer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tricia R Serio, The University of Massachusetts, Amherst, United States

Version history

  1. Received: April 18, 2019
  2. Accepted: September 24, 2019
  3. Accepted Manuscript published: September 25, 2019 (version 1)
  4. Version of Record published: October 7, 2019 (version 2)

Copyright

© 2019, Masser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,107
    views
  • 699
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna E Masser
  2. Wenjing Kang
  3. Joydeep Roy
  4. Jayasankar M Kaimal
  5. Jany Quintana-Cordero
  6. Marc R Friedländer
  7. Claes Andréasson
(2019)
Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1
eLife 8:e47791.
https://doi.org/10.7554/eLife.47791

Share this article

https://doi.org/10.7554/eLife.47791

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.