Free circular introns with an unusual branchpoint in neuronal projections

  1. Harleen Saini  Is a corresponding author
  2. Alicia A Bicknell
  3. Sean R Eddy  Is a corresponding author
  4. Melissa J Moore  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Howard Hughes Medical Institute, Harvard University, United States

Abstract

The polarized structure of axons and dendrites in neuronal cells depends in part on RNA localization. Previous studies have looked at which polyadenylated RNAs are enriched in neuronal projections or at synapses, but less is known about the distribution of non-adenylated RNAs. By physically dissecting projections from cell bodies of primary rat hippocampal neurons and sequencing total RNA, we found an unexpected set of free circular introns with a non-canonical branchpoint enriched in neuronal projections. These introns appear to be tailless lariats that escape debranching. They lack ribosome occupancy, sequence conservation, and known localization signals, and their function, if any, is not known. Nonetheless, their enrichment in projections has important implications for our understanding of the mechanisms by which RNAs reach distal compartments of asymmetric cells.

Data availability

All raw data (fastq format) and corresponding coverage files (bigwig format) are available at NCBI GEO under accession number GSE129924, and a tarball of supplementary tables and code is at http://eddylab.org/publications.html#Saini19.

The following data sets were generated

Article and author information

Author details

  1. Harleen Saini

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    harleen.saini@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6954-4098
  2. Alicia A Bicknell

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sean R Eddy

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    For correspondence
    seaneddy@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6676-4706
  4. Melissa J Moore

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    melissa.moore@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of General Medical Sciences (R01-GM53007)

  • Melissa J Moore

Howard Hughes Medical Institute

  • Sean R Eddy
  • Melissa J Moore

Howard Hughes Medical Institute (International Student Research Fellowship)

  • Harleen Saini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handled in accordance with protocols approved by the Institutional Animal Careand Use Committees at University of Massachusetts Medical School (docket #A-2245-16) and Harvard University (protocol #10-16-1). All surgery was performed after euthanization, and every effort was made to minimize suffering.

Copyright

© 2019, Saini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,030
    views
  • 293
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harleen Saini
  2. Alicia A Bicknell
  3. Sean R Eddy
  4. Melissa J Moore
(2019)
Free circular introns with an unusual branchpoint in neuronal projections
eLife 8:e47809.
https://doi.org/10.7554/eLife.47809

Share this article

https://doi.org/10.7554/eLife.47809

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.