1. Plant Biology
Download icon

Proximity labeling of protein complexes and cell type-specific organellar proteomes in Arabidopsis enabled by TurboID

  1. Andrea Mair
  2. Shou-ling Xu
  3. Tess C Branon
  4. Alice Y Ting
  5. Dominique C Bergmann  Is a corresponding author
  1. Stanford University, United States
  2. Carnegie Institution for Science, United States
Tools and Resources
  • Cited 20
  • Views 13,606
  • Annotations
Cite this article as: eLife 2019;8:e47864 doi: 10.7554/eLife.47864

Abstract

Defining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurbo), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurbo in Arabidopsis and N. benthamiana and versatile vectors enable customization by plant researchers.

Article and author information

Author details

  1. Andrea Mair

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2492-4318
  2. Shou-ling Xu

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Tess C Branon

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Alice Y Ting

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8277-5226
  5. Dominique C Bergmann

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    bergmann@stanford.edu
    Competing interests
    Dominique C Bergmann, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0873-3543

Funding

Howard Hughes Medical Institute

  • Dominique C Bergmann

Austrian Science Fund (J4019-B29)

  • Andrea Mair

National Institutes of Health (RO1-CA186568)

  • Alice Y Ting

Carnegie Institution of Washington

  • Shou-ling Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank LH Menke, The Sainsbury Laboratory, United Kingdom

Publication history

  1. Received: April 22, 2019
  2. Accepted: September 15, 2019
  3. Accepted Manuscript published: September 19, 2019 (version 1)
  4. Version of Record published: October 14, 2019 (version 2)
  5. Version of Record updated: September 28, 2020 (version 3)

Copyright

© 2019, Mair et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,606
    Page views
  • 2,078
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Plant Biology
    Thierry Halter et al.
    Research Article

    Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we find that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a remnant RC/Helitron transposable element (TE) embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets, and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of the RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Hans-Peter Braun
    Insight

    Atomic structures of mitochondrial enzyme complexes in plants are shedding light on their multiple functions.