Proximity labeling of protein complexes and cell type-specific organellar proteomes in Arabidopsis enabled by TurboID

  1. Andrea Mair
  2. Shou-ling Xu
  3. Tess C Branon
  4. Alice Y Ting
  5. Dominique C Bergmann  Is a corresponding author
  1. Stanford University, United States
  2. Carnegie Institution for Science, United States

Abstract

Defining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurbo), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurbo in Arabidopsis and N. benthamiana and versatile vectors enable customization by plant researchers.

Data availability

MS data have been depositedProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (Vizcaino et al. 2013) and can be accessed through a reviewer account.Proximity labeling datasest:Dataset identifier: PXD013596FAMA-CFP AP-MS datasets:Dataset identifier: PXD013595

The following data sets were generated

Article and author information

Author details

  1. Andrea Mair

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2492-4318
  2. Shou-ling Xu

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Tess C Branon

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Alice Y Ting

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8277-5226
  5. Dominique C Bergmann

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    bergmann@stanford.edu
    Competing interests
    Dominique C Bergmann, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0873-3543

Funding

Howard Hughes Medical Institute

  • Dominique C Bergmann

Austrian Science Fund (J4019-B29)

  • Andrea Mair

National Institutes of Health (RO1-CA186568)

  • Alice Y Ting

Carnegie Institution of Washington

  • Shou-ling Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Mair et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 43,178
    views
  • 4,971
    downloads
  • 182
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Mair
  2. Shou-ling Xu
  3. Tess C Branon
  4. Alice Y Ting
  5. Dominique C Bergmann
(2019)
Proximity labeling of protein complexes and cell type-specific organellar proteomes in Arabidopsis enabled by TurboID
eLife 8:e47864.
https://doi.org/10.7554/eLife.47864

Share this article

https://doi.org/10.7554/eLife.47864

Further reading

    1. Plant Biology
    Koji Kato, Yoshiki Nakajima ... Ryo Nagao
    Research Article

    Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein–protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.

    1. Developmental Biology
    2. Plant Biology
    Shijia Lin, Yiwen Zhang ... Zhaoliang Zhang
    Research Article

    Root-synthesized secondary metabolites are critical quality-conferring compounds of foods, plant-derived medicines, and beverages. However, information at a single-cell level on root-specific secondary metabolism remains largely unexplored. L-Theanine, an important quality component of tea, is primarily synthesized in roots, from which it is then transported to new shoots of tea plant. In this study, we present a single-cell RNA sequencing (scRNA-seq)-derived map for the tea plant root, which enabled cell-type-specific analysis of glutamate and ethylamine (two precursors of theanine biosynthesis) metabolism, and theanine biosynthesis, storage, and transport. Our findings support a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. This study provides novel insights into theanine metabolism and regulation, at the single-cell level, and offers an example for studying root-specific secondary metabolism in other plant systems.