Statistical learning attenuates visual activity only for attended stimuli

  1. David Richter  Is a corresponding author
  2. Floris P de Lange
  1. Radboud University Nijmegen, Netherlands

Abstract

Perception and behavior can be guided by predictions, which are often based on learned statistical regularities. Neural responses to expected stimuli are frequently found to be attenuated after statistical learning. However, whether this sensory attenuation following statistical learning occurs automatically or depends on attention remains unknown. In the present fMRI study, we exposed human volunteers to sequentially presented object stimuli, in which the first object predicted the identity of the second object. We observed a reliable attenuation of neural activity for expected compared to unexpected stimuli in the ventral visual stream. Crucially, this sensory attenuation was only apparent when stimuli were attended, and vanished when attention was directed away from the predictable objects. These results put important constraints on neurocomputational theories that cast perception as a process of probabilistic integration of prior knowledge and sensory information.

Data availability

All data and code necessary to replicate the reported results are available via the following URL: http://hdl.handle.net/11633/aacg3rkw

The following data sets were generated

Article and author information

Author details

  1. David Richter

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    d.richter@donders.ru.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3404-8374
  2. Floris P de Lange

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    Floris P de Lange, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6730-1452

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vidi Grant 452-13-016)

  • Floris P de Lange

Horizon 2020 Framework Programme (ERC Starting Grant 678286)

  • Floris P de Lange

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study followed institutional guidelines of the local ethics committee (CMO region Arnhem-Nijmegen, The Netherlands; Protocol CMO2014/288), including informed consent of all participants.

Copyright

© 2019, Richter & de Lange

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,023
    views
  • 378
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Richter
  2. Floris P de Lange
(2019)
Statistical learning attenuates visual activity only for attended stimuli
eLife 8:e47869.
https://doi.org/10.7554/eLife.47869

Share this article

https://doi.org/10.7554/eLife.47869

Further reading

    1. Neuroscience
    Sara A Nolin, Mary E Faulkner ... Kristina Visscher
    Research Article

    The brain is organized into systems and networks of interacting components. The functional connections among these components give insight into the brain's organization and may underlie some cognitive effects of aging. Examining the relationship between individual differences in brain organization and cognitive function in older adults who have reached oldest old ages with healthy cognition can help us understand how these networks support healthy cognitive aging. We investigated functional network segregation in 146 cognitively healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the segregation of the association system and the individual networks within the association system [the fronto-parietal network (FPN), cingulo-opercular network (CON) and default mode network (DMN)], has strong associations with overall cognition and processing speed. We also provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age group. This study shows that network segregation of the oldest-old brain is closely linked to cognitive performance. This work adds to the growing body of knowledge about differentiation in the aged brain by demonstrating that cognitive ability is associated with differentiated functional networks in very old individuals representing successful cognitive aging.

    1. Neuroscience
    Olga Kepinska, Josue Dalboni da Rocha ... Narly Golestani
    Research Article

    This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals’ phonological repertoire. Using data from over 200 participants exposed to 1–7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants’ degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).