Statistical learning attenuates visual activity only for attended stimuli

  1. David Richter  Is a corresponding author
  2. Floris P de Lange
  1. Radboud University Nijmegen, Netherlands

Abstract

Perception and behavior can be guided by predictions, which are often based on learned statistical regularities. Neural responses to expected stimuli are frequently found to be attenuated after statistical learning. However, whether this sensory attenuation following statistical learning occurs automatically or depends on attention remains unknown. In the present fMRI study, we exposed human volunteers to sequentially presented object stimuli, in which the first object predicted the identity of the second object. We observed a reliable attenuation of neural activity for expected compared to unexpected stimuli in the ventral visual stream. Crucially, this sensory attenuation was only apparent when stimuli were attended, and vanished when attention was directed away from the predictable objects. These results put important constraints on neurocomputational theories that cast perception as a process of probabilistic integration of prior knowledge and sensory information.

Data availability

All data and code necessary to replicate the reported results are available via the following URL: http://hdl.handle.net/11633/aacg3rkw

The following data sets were generated

Article and author information

Author details

  1. David Richter

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    d.richter@donders.ru.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3404-8374
  2. Floris P de Lange

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    Floris P de Lange, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6730-1452

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vidi Grant 452-13-016)

  • Floris P de Lange

Horizon 2020 Framework Programme (ERC Starting Grant 678286)

  • Floris P de Lange

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study followed institutional guidelines of the local ethics committee (CMO region Arnhem-Nijmegen, The Netherlands; Protocol CMO2014/288), including informed consent of all participants.

Copyright

© 2019, Richter & de Lange

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,020
    views
  • 378
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Richter
  2. Floris P de Lange
(2019)
Statistical learning attenuates visual activity only for attended stimuli
eLife 8:e47869.
https://doi.org/10.7554/eLife.47869

Share this article

https://doi.org/10.7554/eLife.47869

Further reading

    1. Neuroscience
    Matthew R Kleinman, David J Foster
    Research Article

    Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain’s reward or novelty signals is unknown. Here, we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error (RPE), indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent RPE signal that is reliable only in familiar environments.

    1. Neuroscience
    Shuo Zhang, Yan Tian ... Haiyan Wu
    Research Article

    Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.