Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation

  1. Jelle van den Ameele
  2. Andrea H Brand  Is a corresponding author
  1. The Gurdon Institute, United Kingdom
  2. University of Cambridge, United Kingdom
9 figures, 1 table and 1 additional file

Figures

Figure 1 with 2 supplements
Brain tumours require OxPhos for growth.

(a–g) phospho Histone H3 (pH3) staining in the CNS of third instar larvae (L3) with NSC-specific expression (Wor-GAL4;Tub-GAL80ts) of control RNAi (a), Pros-RNAi (b,c), aPKC-CAAX (d,e) or Brat-RNAi (…

https://doi.org/10.7554/eLife.47887.002
Figure 1—figure supplement 1
Brain tumours require OxPhos and glycolysis for their growth.

(a,b) pH3 in the CNS of L3 larvae. Maximum intensity projections through the CNS; dashed lines outline the CNS. (c) Brain size (area of CNS, maximum intensity projections) from L3 larvae. Datapoints …

https://doi.org/10.7554/eLife.47887.003
Figure 1—figure supplement 2
OxPhos RNAi in NSCs affects mitochondrial function.

(a–c) ATPsynα (mitochondria, Complex V subunit) and GFP (mitochondria in NSCs and their progeny; Wor-GAL4 >Mito GFP) staining in the VNC of L3 larvae with NSC-specific expression of the indicated …

https://doi.org/10.7554/eLife.47887.004
Figure 2 with 4 supplements
OxPhos inhibition decreases NSC proliferation.

(a–c) pH3 staining in the CNS of L3 larvae. Maximum intensity projections through the entire CNS; dashed lines outline the CNS. (d) Brain size from L3 larvae. (e,f) Mitotic index (e) and 15 min EdU …

https://doi.org/10.7554/eLife.47887.005
Figure 2—figure supplement 1
OxPhos inhibition does not affect body size.

Wandering larvae (a,b) or pupae (c,d) with NSC-specific expression of the indicated RNAi. Length is shown in millimetres (mm). Datapoints indicate individual organisms from one biological replicate. …

https://doi.org/10.7554/eLife.47887.006
Figure 2—figure supplement 2
OxPhos inhibition does not increase apoptosis.

(a–d) pH3 staining in the CNS of L3 larvae with NSC-specific expression of the indicated RNAi. Maximum intensity projections through the entire CNS; dashed lines outline the CNS. (e–j) TUNEL, GFP …

https://doi.org/10.7554/eLife.47887.007
Figure 2—video 1
Mitochondrial dysfunction increases cell cycle length.

Time-lapse imaging of NSCs in the early third instar larval VNC (48 hr ALH at 29°C) expressing either two copies of UAS-mCD8-GFP (Control, left), or one copy of UAS-mCD8-GFP and UAS-ND75-TRIP …

https://doi.org/10.7554/eLife.47887.008
Figure 2—video 2
Mitochondrial dysfunction increases cell cycle length.

Time-lapse imaging of NSCs in the late third instar larval VNC (wandering, 72 hr ALH at 29°C) expressing either one copy of UAS-mCD8-GFP (Control, left), or one copy of UAS-mCD8-GFP and …

https://doi.org/10.7554/eLife.47887.009
Figure 3 with 2 supplements
OxPhos is required for temporal patterning of NSC and their progeny.

(a) Scheme of the major temporal transitions in larval NSCs. (b–d) Dpn and Imp expression in the VNC of L3 larvae. Arrowheads indicate Imp-positive NSCs. (e) Percentage of Dpn-positive NSCs in the …

https://doi.org/10.7554/eLife.47887.010
Figure 3—figure supplement 1
Mitochondrial dysfunction in NSCs delays temporal patterning.

(a–c) Overview of Imp and Syp in the thoracic VNC of L3 larvae. Single confocal sections at comparable depths through the ventral side of the VNC; dashed lines outline the VNC; arrowheads indicate …

https://doi.org/10.7554/eLife.47887.011
Figure 3—figure supplement 2
Delayed temporal patterning of NSCs affects their progeny.

(a–c) Overview of Chinmo and Broad in the thoracic VNC of L3 larvae. Single confocal sections at comparable depths through the ventral side of the VNC; dashed lines outline the VNC. (d–f) RFP …

https://doi.org/10.7554/eLife.47887.012
Figure 4 with 2 supplements
G1/S progression drives temporal patterning.

(a–f) Dpn (NSCs), pH3 (mitosis) and Imp in the VNC of L3 larvae after NSC-specific expression of the indicated transgene. Arrowheads indicate Imp-positive NSCs. (g) Scheme depicting activity of the …

https://doi.org/10.7554/eLife.47887.013
Figure 4—figure supplement 1
G1/S and G2/M delay results in smaller brains.

(a) size (area of CNS maximum intensity projections) of pharate adult CB. (b,c) Immunostaining for Dpn (NSCs), Chinmo and Broad in the VNC of wildtype L3 larvae or larvae with NSC-specific …

https://doi.org/10.7554/eLife.47887.014
Figure 4—figure supplement 2
AMPK deletion does not rescue the temporal patterning defect caused by OxPhos inhibition.

(a,b) Dpn (NSCs), RFP (negatively marked AMPK-/- clones) and Imp in the VNC of L3 larvae after heatshock at 0hALH. Arrowheads indicate Dpn-positive NSCs. Dashed outlines mark RFP-negative clones. …

https://doi.org/10.7554/eLife.47887.015
Figure 5 with 1 supplement
NSCs require OxPhos for termination of proliferation.

(a–g) ElaV (neurons), GFP (NSCs, Wor-GAL4 >mCD8 GFP), Dpn (NSCs) and pH3 (mitosis) in the pharate adult CB or VNC. Maximum intensity projections through the CB or VNC; dashed lines mark the outline …

https://doi.org/10.7554/eLife.47887.016
Figure 5—figure supplement 1
Adult neurogenesis upon OxPhos knockdown and G1/S delay.

(a–d) ElaV (neurons), GFP (NSCs, Wor-GAL4 >mCD8 GFP), Dpn (NSCs) and pH3 (mitosis) in the pharate adult CB (a–c) or VNC (d). Maximum intensity projections through the CB or VNC; dashed lines outline …

https://doi.org/10.7554/eLife.47887.017
Model of the role of OxPhos in Drosophila NSCs and tumour cells.

We propose a model, whereby highly proliferative Drosophila NSCs also rely on OxPhos for most aspects of their behaviour. In particular, the G1/S transition depends on OxPhos activity and …

https://doi.org/10.7554/eLife.47887.018
Author response image 1
Author response image 2
Author response image 3

Tables

Key resources table
Reagent type
(species)
DesignationSource
or reference
IdentifiersAdditional
information
Genetic reagent (D. melanogaster)mCherry-TRIPBDSCRRID: BDSC_35785Control RNAi
Genetic reagent (D. melanogaster)w1118;+;+BDSCRRID: BDSC_3605
Genetic reagent (D. melanogaster)ND75-TRIPBDSCRRID: BDSC_33911Complex I RNAi
Genetic reagent (D. melanogaster)Blw-TRIPBDSCRRID: BDSC_28059Complex V RNAi
Genetic reagent (D. melanogaster)Pros-TRIPBDSCRRID: BDSC_42538
Genetic reagent (D. melanogaster)Brat-TRIPBDSCRRID: BDSC_28590
Genetic reagent (D. melanogaster)ND42-TRIPBDSCRRID: BDSC_32998
Genetic reagent (D. melanogaster)ND51-TRIPBDSCRRID: BDSC_36701
Genetic reagent (D. melanogaster)Blw-RNAi-KKVDRC34663
Genetic reagent (D. melanogaster)ATPsynβ-TRIPBDSCRRID: BDSC_28056
Genetic reagent (D. melanogaster)ATPsynγ-TRIPBDSCRRID: BDSC_28723
Genetic reagent (D. melanogaster)ATPsynO-TRIPBDSCRRID: BDSC_43265
Genetic reagent (D. melanogaster)PFK-TRIPBDSCRRID: BDSC_34336
Genetic reagent (D. melanogaster)Aldolase-TRIPBDSCRRID: BDSC_26301
Genetic reagent (D. melanogaster)PyK-TRIPBDSCRRID: BDSC_35218
Genetic reagent (D. melanogaster)PGK-RNAi-KKVDRC110081
Genetic reagent (D. melanogaster)UASp-EGFP-Myt1BDSCRRID: BDSC_65393
Genetic reagent (D. melanogaster)UASt-dWee1(Price et al., 2002) PMID: 12072468
Genetic reagent (D. melanogaster)UASt-Dap(Lane et al., 1996) PMID: 8980229
Genetic reagent (D. melanogaster)UAS-Rbf-280(Duman-Scheel et al., 2002) PMID: 12015606
Genetic reagent (D. melanogaster)UASt-aPKC.CAAXWT(Lee et al., 2006; Sotillos et al., 2004) PMID: 16357871, 15302858
Genetic reagent (D. melanogaster)UAS-mito-HA-GFP,e1BDSCRRID: BDSC_8443
Genetic reagent (D. melanogaster)UAS-AT1.03-NL on III(Tsuyama et al., 2013) PMID: 23875533
Genetic reagent (D. melanogaster)UAS-AT1.03-RK on III(Tsuyama et al., 2013) PMID: 23875533
Genetic reagent (D. melanogaster)UAS-GFP-E2F1.1–230, UAS-mRFP1-NLS-CycB.1–266(Zielke et al., 2014) PMID: 24726363Fly FUCCI
Genetic reagent (D. melanogaster)Worniu-GAL4 on II(Albertson et al., 2004) PMID: 15536119
Genetic reagent (D. melanogaster)Cas::GFP FlyFos lineVDRC318476
Genetic reagent (D. melanogaster)Ubi-FRT-Stop-FRT-GFPBDSCRRID: BDSC_32251
Genetic reagent (D. melanogaster)Imp8(Munro et al., 2006) PMID: 16476777Imp mutant
Genetic reagent (D. melanogaster)Ampkα3(Haack et al., 2013) PMID: 24337115AMPK mutant
Antibodyrat anti-PH3 (monoclonal)Abcamab10543
RRID: AB_2295065
IF, 1/500
Antibodyrabbit anti-PH3 (polyclonal)Merck Millipore06–570 RRID: AB_310177IF, 1/500
Antibodyguinea pig anti-Dpn (polyclonal)James SkeathIF, 1/10,000
Antibodyrabbit anti-Imp (polyclonal)(Geng and Macdonald, 2006) PMID: 17030623IF, 1/600
Antibodyguinea pig anti-Syp (polyclonal)(McDermott et al., 2012) PMID:
23213441
IF, 1/1000
Antibodychicken anti-GFP (polyclonal)Abcamab13970 RRID: AB_300798IF, 1/2000
Antibodyrat anti-Mira (polyclonal)Chris DoeIF, 1/500
Antibodyrat anti-Chinmo (polyclonal)(Wu et al., 2012) PMID: 22814608IF, 1/500
Antibodymouse anti-Broad (monoclonal)DSHB25E9.07IF, 1/100
Antibodyrabbit anti-RFP (polyclonal)Abcamab62341 RRID: AB_945213IF, 1/500
Antibodyrat anti-ElaV (monoclonal)DSHB7E8A10IF, 1/100
Antibodymouse anti-Sevenup (polyclonal)(Kanai et al., 2005) PMID: 15691762IF, 1/200
Antibodymouse anti-ATPsynα (monoclonal)Abcamab14748 RRID: AB_301447IF, 1/100
AntibodyGFP-booster Atto647NChromotekgba647n RRID: AB_2629215IF, 1/500 for STED
Commercial assay or kitApopTag Red In Situ Apoptosis Detection kitMerkc MilliporeS7165
Commercial assay or kitClick-iT EdU Alexa Fluor 647 Imaging KitInvitrogenC10340
Chemical compound, drug2-deoxyglucoseSigmaD8375200 mM final concentration

Additional files

Download links