Damage to the right insula disrupts the perception of affective touch
Abstract
Specific, peripheral C-tactile afferents contribute to the perception of tactile pleasure, but the brain areas involved in their processing remain debated. We report the first human lesion study on the perception of C-tactile touch in right hemisphere stroke patients (N = 59), revealing that right posterior and anterior insula lesions reduce tactile, contralateral and ipsilateral pleasantness sensitivity, respectively. These findings corroborate previous imaging studies regarding the role of the posterior insula in the perception of affective touch. However, our findings about the crucial role of the anterior insula for ipsilateral affective touch perception open new avenues of enquiry regarding the cortical organization of this tactile system.
Data availability
The data that support the findings of this study are available on the Open Science Framework (https://osf.io/fyrwc/?view_only=75773c749be84432994beca994481988).
-
Affective Touch Lesion StudyOpen Science Framework, fyrwc.
Article and author information
Author details
Funding
European Research Council (ERC-2012-STG GA313755)
- Aikaterini Fotopoulou
MIUR Italy (PRIN 20159CZFJK)
- Valentina Moro
University of Verona (Bando di Ateneo per la Ricerca di Base 2015 project MOTOS)
- Valentina Moro
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants gave written, informed consent to take part in the study and to publish. The local National Health System Ethics Committees approved the study (REC:05/Q0706/218), which was carried out in accordance to the Declaration of Helsinki.
Copyright
© 2020, Kirsch et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,983
- views
-
- 371
- downloads
-
- 59
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral outcomes despite similarities in sensory input. We sought to understand how fluctuations in behavioral state and cortical layer and cell class-specific neural activity underlie this perceptual variability. We analyzed physiological measurements of state and laminar electrophysiological activity in visual area V4 while monkeys were rewarded for correctly reporting a stimulus change at perceptual threshold. Hit trials were characterized by a behavioral state with heightened arousal, greater eye position stability, and enhanced decoding performance of stimulus identity from neural activity. Target stimuli evoked stronger responses in V4 in hit trials, and excitatory neurons in the superficial layers, the primary feed-forward output of the cortical column, exhibited lower variability. Feed-forward interlaminar population correlations were stronger on hits. Hit trials were further characterized by greater synchrony between the output layers of the cortex during spontaneous activity, while the stimulus-evoked period showed elevated synchrony in the feed-forward pathway. Taken together, these results suggest that a state of elevated arousal and stable retinal images allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.
-
- Neuroscience
Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can ‘walk’ across the mouse brain slice, termed ‘patch-walking.’ We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e. 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding three connections. Patch-walking yields 80–92% more probed connections, for experiments with 10–100 cells than the traditional synaptic connection searching method.