C. elegans neurons have functional dendritic spines

  1. Andrea Cuentas-Condori
  2. Ben Mulcahy
  3. Siwei He
  4. Sierra Palumbos
  5. Mei Zhen
  6. David M Miller  Is a corresponding author
  1. Vanderbilt University, United States
  2. University of Toronto, Canada

Abstract

Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al. 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 4 and 5.

Article and author information

Author details

  1. Andrea Cuentas-Condori

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4847-0031
  2. Ben Mulcahy

    Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3336-245X
  3. Siwei He

    Neuroscience Program, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sierra Palumbos

    Neuroscience Program, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mei Zhen

    Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0086-9622
  6. David M Miller

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    david.miller@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9048-873X

Funding

National Institute of Neurological Disorders and Stroke (R01NS081259)

  • David M Miller

National Institute of Neurological Disorders and Stroke (R01NS106951)

  • David M Miller

American Heart Association (18PRE33960581)

  • Andrea Cuentas-Condori

National Science Foundation (DGE:1445197)

  • Sierra Palumbos

Canadian Institutes of Health Research (FS154274)

  • Mei Zhen

American Heart Association (19PRE34380582)

  • Sierra Palumbos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Version history

  1. Received: April 24, 2019
  2. Accepted: October 3, 2019
  3. Accepted Manuscript published: October 4, 2019 (version 1)
  4. Version of Record published: October 21, 2019 (version 2)

Copyright

© 2019, Cuentas-Condori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,661
    Page views
  • 629
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Cuentas-Condori
  2. Ben Mulcahy
  3. Siwei He
  4. Sierra Palumbos
  5. Mei Zhen
  6. David M Miller
(2019)
C. elegans neurons have functional dendritic spines
eLife 8:e47918.
https://doi.org/10.7554/eLife.47918

Share this article

https://doi.org/10.7554/eLife.47918

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.